Supporting Information

Hollow Silica Nanoparticles Loaded with Industrial Dyes for High Exhaustion Leather Dyeing and its sustainability impact

Sathya Ramalingam^{a*}, Jonnalagadda Raghava Rao^b and Kalarical Janardhanan Sreeram^c

^aLeather Process Technology Department, Central Leather Research Institute, Adyar, Chennai 600 020, India.

^b Inorganic and Physical Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India.

^c Director- Central Leather Research Institute, Adyar, Chennai-600020, India.

*Corresponding Author: rsathya@clri.res.in; Tel. +91 44 2443 7230

Figure S1- Structure of the dye

Table S1 Sample code and its corresponding descript

S.no	Sample name	Description	Dye characteristics
1	QY	Quinoline Yellow	Anionic Dye
2	QY-Si-OH	Quinoline Yellow modified with silica nanoparticles contains OH terminal.	
3	QY-Si-Methyl	Quinoline Yellow modified with silica nanoparticles contains methyl terminal.	

Raw Materials: Chrome tanned leather (goat)									
Process	Chemical Name	% Offered	Duration	Remarks					
Neutralization	Water	100							
	Neutralizing syntan +			Cross-section pH: 5.2-					
	Sodium bicarbonate +	1 + 0.5 + 10	(3 x 10 min)	5.5					
	water		+ 60 min	Drain/Wash/Drain					
Dyeing	Dye	1.5	-Run 45	Check penetration					
			min						
Retanning	Acrylic syntan	3	- Run 20	-					
			min						
	Low molecular weight	5							
	phenolic syntan +	+	-Run 60 min	-					
	Melamine based	4							
	syntan +	+							
	GS powder	4							
Fatliquoring	Synthetic +			-					
	Sulphochlorinated fish	6+4+2+50	(3 x 15 min						
	oil + Semi synthetic +) + 120						
	Water								
Washing	Water	200	15 min	Drain					
Fixing	Water	10	(3 x 5 min)	Check exhaustion					
	Formic acid	3	+ 60 min	/Drain					
Next day:- Settin	g/ Vacuum Drying/ Hool	king/ Stacking	/Buffing.						

 Table S2 Post-tanning recipe adopted for upper leather processing

Figure S2 The grain, flesh and cross-sectional view of chrome leather dyed with (a) Quinoline yellow dye, (b) Quinoline yellow modified silica with surface OH group (QY-Si-OH) and (c) Quinoline yellow modified silica with surface methyl group (QY –Si-Methyl). (a1), (b1), and (c1) represent their corresponding flesh side of dyed leather

Figure S3 The grain, flesh and cross-sectional view of vegetable leather dyed with (a) free Quinoline yellow dye, (b) Quinoline yellow modified into silica with surface OH group (QY-Si-OH) and (c) Quinoline yellow modified into silica with surface methyl group (QY –Si-Methyl). (a1), (b1), and (c1) represent their corresponding flesh side of dyed leather.

Sample Name		Cellulose acetate	Bleached cotton	Spun nylon	Spun polyester	Spun acrylic	Worsted spun wool
Chrome	QY	4	4	4	4	4	4
Tanned Leather	QY-Si-OH	4	4/5	4	4/5	5	5
	QY-Si-Methyl	4/5	4/5	5	4/5	4/5	4/5
Vegetable Tanned Leather	QY	4	4	3/4	4	4	3/4
	QY-Si-OH	4/5	4/5	5	4/5	5	5
	QY-Si-Methyl	4/5	4/5	4	4/5	4/5	4/5

Table S3 Greyscale rating of leather dyed with free and dye modified silica nanoparticles during fastness to the water

Table S4 Coloured matrix exposed to different temperatures with its greyscale rating and their respective colour swatches.

	Sample		Grey	y Scale l	Rating		Colour	· Swatch
	name	50°C	100°C	150°C	200°C	250°C	0°C	250°C
Chrome Tanned	QY	5	5	4/5	4	4		
Leather	QY-Si-OH	5	5	5	4/5	4/5		
	QY-Si- Methyl	5	5	5	5	4/5		
Vegetable Tanned	QY	4	3/4	3	3	2		
Leather	QY-Si- OH	5	5	5	4	4		
	QY-Si- Methyl	5	5	4/5	4/5	4/5		

Figure S4 The Scanning Electron Microscopic Image A) and B) showing the details of grain surface of dye modified with silica nanoparticles treated Chrome tanned leather and Vegetable tanned leather respectively and A1- B1 are their corresponding cross-sectional image.

El	AN	Series	unn. C	norm. C	Atom. C	Error
			[wt.%]	[wt.%]	[wt.%]	[wt.%]
0	8	K-series	6.67	52.43	73.35	1.0
S	16	K-series	2.41	18.91	13.20	0.1
Cr	24	K-series	3.26	25.63	11.03	0.1
Si	14	K-series	0.39	3.03	2.42	0
		Total:	12.73	100.00	100.00	

Figure S5 The Scanning Electron Microscopic image and elemental analysis of chrome tanned leather dyed with a free dye

El	AN	Series	unn. C	norm. C	Atom. C	Error
			[wt.%]	[wt.%]	[wt.%]	[wt.%]
0	8	K-series	15.44	43.36	58.39	1.9
Si	14	K-series	18.33	51.45	39.47	0.8
Cr	24	K-series	1.85	5.19	2.15	0.1
		Total:	35.62	100.00	100.00	

Figure S6 The Scanning Electron Microscopic image and elemental analysis of chrome tanned leather dyed with dye modified silica nanoparticles

El	AN	Series	unn. C	norm. C	Atom. C	Error
			[wt.%]	[wt.%]	[wt.%]	[wt.%]
0	8	K-series	23.04	57.28	70.19	2.6
Si	14	K-series	17.18	42.72	29.81	0.8
		Total:	40.22	100.00	100.00	

Figure S7 The Scanning Electron Microscopic image and elemental analysis of vegetable tanned leather dyed with dye modified silica nanoparticles.

Equation 1

 $E Factor = (Mass of the waste) \div (Mass of the Product)$

Equation 2

Mass Intensity = $((Total mass of material used)(Kg)) \div ((mass of the product)(Kg))$