Extraction of Cellulose from Restaurant Food Waste

Matthew T. Garnett¹, Harrish Kumar Senthil Kumar¹, Bryan S. Beckingham¹, and Symone L. M. Alexander^{1*}

¹ Department of Chemical Engineering, Auburn University, Auburn, AL, USA

* Correspondence:

Corresponding Author

Symone Alexander, 212 Ross Hall, Auburn, AL 36849, USA, sla0044@auburn.edu

Keywords: cellulose, biopolymers, extraction, food waste, pomace.

Supplementary Material

Tables

Supplementary Table S1: List of fruits and vegetables on the menu for the I Love Juice Bar®

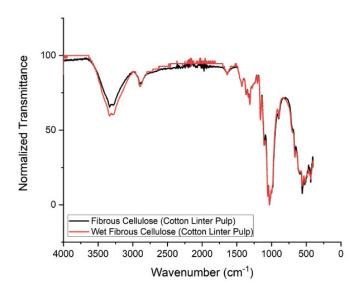
Fruits:	Vegetables:	
acai	basil	
apple	beets	
avocado	bell pepper	
banana	carrot	
blueberry	celery	
cucumber	chickpeas	
lemon	corn	
mango	ginger	
orange	kale	
pineapple	lentils	
strawberry	mint	
tomato	parsley	
zucchini	spinach	
	squash	
	wheatgrass	

Supplementary Table S2: Yields of extracted cellulose – Mixed food waste on average yielded 4.41% cellulose utilizing the acid/base procedure.

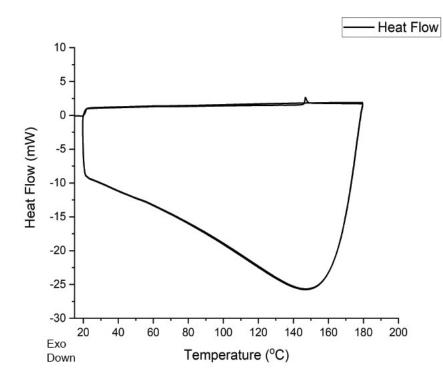
	Waste:	Sample:	
1	300.00 g	12.20 g	4.01%
2	300.01 g	10.79 g	3.60%
3	300.29 g	10.90 g	3.63%
4	300.28 g	13.75 g	4.58%
5	300.51 g	15.97 g	5.32%
6	300.03 g	15.95 g	5.32%

<u>Supplementary Table S3</u>: Determination of Viscosity from Ubbelohde Viscometer - Viscosity values determined for 0.5 wt% control and 0.5 wt% extracted cellulose in 50 mL of 0.5 M Cupriethylenediamine (CED) solution. The concentration of the solution was 0.005 g/mL.

Sample:	Kinematic Viscosity (cP):	Relative Viscosity:	Specific Viscosity:	Intrinsic Viscosity (mL/g):	Density (g/cm³):
Control	1.798 <u>+</u> 0.019	1.234	0.234	43.562	1.055
Cellulose					
Solution					
Extracted	1.687 <u>+</u> 0.066	1.046	0.046	9.074	1.055
Cellulose					
Solution					
0.5 M CED	1.463 <u>+</u> 0.019				1.052
Soltuion					


Supplementary Table S4: Crystallinity index of the cellulose samples by X-ray Diffraction & mean size of ordered crystalline domains.

Sample	^{CrI} (%)	FWHM (rad)	т (Å)
Microcrystalline Control	61	0.035	45.0
Fibrous Control	61	0.021	75.2
Extracted Cellulose	16	0.024	64.4


Figures

Supplementary Figure 1: Approximately 50 lbs of an assortment of fruit and vegetable waste was collected from a local restaurant and processed for the extraction of biopolymers. After collection, the food waste was dehydrated for approximately 14 hours, prior to being pulverized into a powder for use in the acid/base extraction procedure.

Supplementary Figure 2: FTIR Spectroscopy was performed on both a dry cellulose and wet cellulose sample that had been air-dried. The main difference between the two samples can be observed at the 3300 cm⁻¹ peak with difference in stretching vibrations. This is due to the presence of -OH groups from water molecules.

<u>Supplementary Figure 3</u>: DSC of Cellulose from Mixed Food Waste – DSC was performed on the extracted cellulose sample to determine the glass transition temperature with a heat/cool/heat cycle from 20-180°C at a 5°C/min ramp.