Electronic Supplementary Material (ESI) for RSC Sustainability. This journal is © The Royal Society of Chemistry 2023

Supporting Information

The heat-promoted metal-support interaction of PtCu/SiO₂ carbon-free catalyst for

methanol oxidation and oxygen reduction reactions

Quanqing Zhao,^a Han Zhi,^b Liu Yang,^a Feng Xu^{a,b*}

^aCollage of Materials Science and Technology, Fuzhou University, Fuzhou, 350108, China.

^bSchool of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China.

E-mail: xufeng.mater@fzu.edu.cn

1. Chemicals

Ethanol, ammonium hydroxide (28 wt.%), ethylsilicate, Chloroplatinic acid hexahydrate $[H_2PtCl_6.6H_2O)]$, copper nitrate hydrate $[Cu(NO_3)_3.3H_2O]$ and ethylene glycol (EG) were of analytical reagent (A.R.) grade and purchased from Sinopharm Chemical Reagent Co., Ltd. Commercial 20 wt.% Pt/C was self-made in lab. All chemicals were used as received. Deionized water (DI water, Millipore, 18.2 M Ω at 25 °C) was used in all processes.

2. Characterizations

The morphology was observed by scanning electron microscope (SEM · SUPRA 55,Carl Zeiss), and the structure was identified by transmission electron microscope(TEM, Titan G2 60-300 with image corrector).The X-ray diffraction (XRD, Ultima III, Rigaku) was performed to identify the crystal structure. FTIR was tested using */AVATAR360. X-ray photoelectron spectroscopy (XPS) was carried out on ESCALAB 250 (Thermo Scientific) to probe the surface chemical information of catalysts.

Figure S1. XRD pattern of $PtCu/SiO_2$ with 10, 20, 30, 40 wt.% Pt loading ($PtCu/SiO_2$ -10%, $PtCu/SiO_2$ -20%, $PtCu/SiO_2$ -30% and $PtCu/SiO_2$ -40%), HC300-30% and HC300-40% represent the catalysts $PtCu/SiO_2$ -30% and $PtCu/SiO_2$ -40% calcined at 300 °C.

Figure S2. FTIR spectra of PtCu/SiO₂ with different Pt loading (PtCu/SiO₂-10%, PtCu/SiO₂-20%, PtCu/SiO₂-30% and PtCu/SiO₂-40%), HC300-30%, and HC300-40%.

Figure S3 The elemental mapping of HC300-40%.

Figure S4 A, the Nyquist plots of carbon (XC-72), SiO₂ nanospheres, PtCu/SiO₂-40%, and HC300-40%; B, the plots from 4~7 Ohm of horizontal coordinate.

Figure S5. MOR activities of PtCu/SiO₂-10%, PtCu/SiO₂-20%, PtCu/SiO₂-30%, and PtCu/SiO₂-40%.

Figure S6. MOR durability of PtCu/SiO₂-30% (A), HC300-30% (B), PtCu/SiO₂-40% (C), HC300-40% (D), and Pt/C (E).

Sample	SiO ₂ (wt %)	Pt (wt %)	Cu (wt %)	Pt:Cu (at %)
PtCu/SiO ₂ -10%	88.1	8.1	3.7	0.72
PtCu/SiO ₂ -20%	60	32	7.9	1.33
PtCu/SiO ₂ -30%	45.2	38.9	15.8	0.81
PtCu/SiO ₂ -40%	29	58	13	1.46
HC300-30%	37.3	50	12	1.36
HC300-40%	43	46.6	10.4	1.47

Table S1 The composition detected by ICP-AES

Sample	Si 2p (eV)	Cu 2p _{3/2} (eV)	$Cu\ 2p_{1/2}\ (eV)$	Pt $4f_{7/2}$ (eV)	Pt $4f_{5/2}$ (eV)
PtCu/SiO ₂ -30%	103.68	932.08	951.68	71.28	74.48
HC300-30%	103.48	932.28	951.78	71.58	74.78
PtCu/SiO ₂ -40%	103.68	931.88	951.68	71.38	74.58
HC300-40%	103.48	932.48	952.18	71.68	74.88

Table S2 The binding energy of all catalysts detected by XPS

Sample	ECSA (m^2/g_{pt})	MA (A mg_{pt}^{-1})	$SA (mA cm^{-2})$	$I_f : I_b$
PtCu/SiO ₂ -30%	1.84	0.032	1.785	1.49
HC300-30%	1.83	0.051	2.79	1.34
PtCu/SiO ₂ -40%	3.53	0.13	3.66	1.30
HC300-40%	4.38	0.28	6.35	1.27
Pt/C	30.8	0.29	0.945	0.93

Table S3 The MOR test results of all catalysts