SUPPORTING INFORMATION

Effect of chloride salts and microwave on polyethylene terephthalate (PET) hydrolysis by iron chloride/acetic acid Lewis/Brønsted acidic deep eutectic solvent

Marco Rollo,^a Massimo Perini,^a Alessandro Sanzone,^b Lorenzo Polastri,^b Matteo Tiecco,^c Alejandro Torregrosa-Chinillach,^d Elisa Martinelli,^{a,*} Gianluca Ciancaleoni^{a,*}

^a Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, I-56124 Pisa, Italy
^b gr3n SA, Via Probello 19, 6963 Lugano, Switzerland
^c Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, via
Madonna delle Carceri, 62032 Camerino, MC, Italy
^d Department of Organic Chemistry, Faculty of Sciences, Institute of Organic Synthesis (ISO), University of Alicante, Apdo. 99, 03080 Alicante, Spain

Corresponding authors: elisa.martinelli@unipi.it; gianluca.ciancaleoni@unipi.it

x(FeCl ₃ ·6H ₂ O)	x(acetic acid)	$T_{m}(K)$
1	0	310.15 ^a
0.75	0.25	219.9 ± 2.75
0.67	0.33	215.4 ± 0.75
0.5	0.5	209.35 ± 2.8
0.33	0.67	211.75 ± 1.2
0	1	289.6 ^b

Table S1. Experimental melting points of LBDES1 (average of four measurements).

^a From PubChem, ref 1; ^b From National Institute of Standards and Technology, ref 2

Table S2. Density values of LBDES1 at different temperatures, in the absence and presence ofCaCl2 (LBDES2).

	Density (g/mL)		
T (°C)			
_	LBDES1	LBDES2	
15	1.5188	1.5291	
20	1.5092	1.5189	
25	1.4997	1.5089	
30	1.4903	1.4990	
35	1.4810	1.4893	
40	1.4718	1.4799	
45	1.4627	1.4706	
50	1.4538	1.4615	
55	1.4449	1.4527	
60	1.4363	1.4440	

T (°C)	σ (mS/cm)	
	LBDES1	LBDES2
15	5.58	11.69
20	7.38	14.8
25	9.68	18.51
30	13.47	22.3
35	16.57	26.9
40	20.2	31.3
45	24.1	36.5
50	28.6	41.6
55	33.2	46.8
60	37.8	48.6

Table S3. Conductivity values of LBDES1 at different temperatures, in the absence and presence ofCaCl2 (LBDES2).

Figure S1. Graphical trends of (a) conductivity and (b) density of **LBDES1** with temperature. For conductivity data, the exponential fitting equation is $\sigma = (9 \pm 4)10^6 \exp((4100 \pm 200)/T) (r^2 = 0.9921)$.

Figure S2. Graphical trends of (a) conductivity and (b) density of **LBDES2** with temperature. For conductivity data, the exponential fitting equation is $\sigma = (9 \pm 2)10^5 \exp((3220 \pm 80)/T)$ ($r^2 = 0.9958$).

$CaCl_2$ (eq)	T _m
0	-60.0
1	-59.0
2	-59.3
3	-59.3
4	-63.7

Table S4. Melting point (T_m , °C) of LBDES1 with the addition of different aliquots of CaCl₂.

IR and NMR spectra

Figure S3. Scan range 400-4000 cm⁻¹, 32 scans, resolution 4 cm⁻¹.

Figure S4. ¹³C{¹H} NMR spectrum (solvent DMSO-d6, room temperature) of **TA** resulting from the depolymerization of PET by using FeCl₃·6H₂O/acetic acid (1:1) and improved work-up (see main text).

Figure S5. Temperature change of 8 g of deionized water under a microwave irradiation of 100 W for 30 s.

Figure S6. ¹H NMR spectrum (solvent DMSO-d6, room temperature) of **TA** resulting from the depolymerization of PET at 180 °C under MW irradiation. The large peak at 8 ppm is due to **TA**, the small peaks around it are due to impurities present in post-consume bottles (as isophthalic acid and benzoic acid). Any peaks due to bis(2-hydroxyethyl) terephthalate would be present in the 3.8-4.3 ppm (two triplets) but the zone is clean.

References

- (1) https://pubchem.ncbi.nlm.nih.gov/compound/Ferric-chloride.
- (2) https://webbook.nist.gov/cgi/cbook.cgi?ID=C64197&Mask=4.