Electronic Supplementary Information

Screening and Property Targeting of Thermochemical Energy Storage Materials in Concentrated Solar Power using Thermodynamics-based Insights and Mathematical Optimization

Ishan Bajaj^{1,2}, Xinyue Peng³, Christos T. Maravelias^{2,4}

¹Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

²Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey, USA

³Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Wisconsin, USA

⁴Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA

S1 Reaction list and comparison of properties

Table S1 lists the reactions generated based on stoichiometry. For each of the reactions, equilibrium temperature (T^{eq}) is estimated:

$$T^{eq} = -\frac{\Delta G^r}{R\log p_c^{\nu_c}}$$

where ΔG^r , R, p_C, v_C are the Gibbs energy of reaction, universal gas constant, partial pressure of gas C, and stoichiometry coefficient, respectively. Partial pressure of gas C in oxide reactions is fixed to 0.21, whereas it is taken to be 1 bar for hydroxide and carbonate reaction systems. Reaction enthalpy (ΔH^r) is also reported and estimated at T^{eq}.

No.	Reactions	T ^{eq} (K)	ΔH^r (kJ/mol)
	$Mn_2O_3 <> 0.66667 Mn_3O_4$		
1	$+ 0.16667 0_2$	1174.1	32.136
2	$Mn_2O_3 <> 2 MnO + 0.5 O_2$	1646.7	173.85
3	$Mn\tilde{0}_{2}$ <> 0.5 $Mn_{2}O_{3}$ + 0.25 O_{2}	717.69	39.764
4	$Mn_3\bar{O}_4 <> 3 Mn\bar{O} + 0.5 O_2$	1846.2	196.46
	$MnO_2 <> 0.33333 Mn_3O_4$		
5	$+ 0.333330_2$	809.44	56.15
6	$V_2O_5 <> V_2O_4 + 0.5O_2$	1835.4	174.72
7	$V_2 O_5 <> V_2 O_3 + O_2$	2405.1	384.59
8	$V_2O_5 <> 2VO_2 + 0.5O_2$	2714.6	886.8
9	$V_2O_5 <> 2VO + 1.5O_2$	2945	717.73
10	$V_2O_4 <> V_2O_3 + 0.5O_2$	3680.7	139.68
11	$V_2O_4 <> 2VO + O_2$	3909.6	451.06
12	$BaO_2 <> BaO + 0.5 O_2$	1015.3	80.479
13	$CuO <> 0.5 Cu_2O + 0.25 O_2$	1304.9	64.907
	$Fe_2O_3 <> 0.66667 Fe_3O_4$		
14	$+ 0.16667 O_2$	1613.1	77.754
15	$Fe_2O_3 <> 2 FeO + 0.5 O_2$	2011.9	319.48
16	$Fe_3O_4 <> 3 FeO + 0.5 O_2$	2431.4	229.07
17	$SrO2 <> SrO + 0.5 O_2$	393.51	40.425
18	$MnO_2 <> MnO + 0.5 O_2$	1178.7	131.17
19	$RhO_2 <> 0.5 Rh_2O_3 + 0.25 O_2$	38.006	-19.778
20	$Li_2O_2 <> Li_2O + 0.5O_2$	374.75	33.702
21	$LiO <> 0.5 Li_2O + 0.25 O_2$	3413	-298.33
22	$CrO_3 <> 0.5 Cr_2O_3 + 0.75 O_2$	149.23	19.338
23	$CrO_2 <> 0.5 Cr_2O_3 + 0.25 O_2$	73163	1.03E+05
24	$Cr_2O_3 <> 2 CrO + 0.5 O_2$	3483.2	1240.3
25	$PbO_2 <> PbO + 0.5 O_2$	532.88	54.465
	$PbO_2 <> 0.33333 Pb_3O_4$		
26	$+ 0.333330_{2}$	487.73	34.855
27	$Sb_2O_5 <> Sb_2O_4 + 0.5O_2$	570.22	67.489

Table S1. List of reaction considered and their estimated properties.

28	$Sb_2O_5 <> 2 SbO + 1.5 O_2$	1139.1	755.25
29	$Sb_2O_5 <> Sb_2O_3 + O_2$	1095.7	341.34
30	$Sb_2O_5 <> 0.5 Sb_4O_6 + O_2$	1143.1	371.04
31	$Pb_3O_4 <> 3 PbO + 0.5 O_2$	638.72	57.949
32	$Sb_2O_4 <> 2 SbO + O_2$	1271.7	675.31
33	$Sb_2O_4 <> Sb_2O_3 + 0.5O_2$	1441.4	277.85
34	$Sb_2O_4 <> 0.5 Sb_4O_6 + 0.5 O_2$	1508.7	292.71
	$UO_3 <> 0.33333 U_3 O_8$		
35	$+ 0.166670_2$	860.96	34.881
36	$UO_3 <> 0.25 U_4O_9 + 0.375 O_2$	1340.3	98.232
37	$UO_3 <> UO_2 + 0.5O_2$	1544.4	139.18
38	$U_3 O_8 <> 0.75 U_4 O_9 + 0.625 O_2$	2066.7	180.41
39	$U_3 O_8 <> 3 U O_2 + O_2$	2260.8	278.36
40	$Na_2O_2 <> Na_2O + 0.5O_2$	1141.2	87.077
41	$NaO_2 <> 0.5 Na_2O + 0.75 O_2$	632.37	46.146
42	$NaO <> 0.5 Na_2O + 0.25 O_2$	2770	-213.11
43	$NaO_2 <> 0.5 Na_2O_2 + 0.5 O_2$	120.96	5.9705
44	$NaO_2 <> NaO + 0.5 O_2$	1817.3	270.81
45	$AlO_2 <> 0.5 Al_2O_3 + 0.25 O_2$	5064.2	-449.07
46	$AlO_2 <> 0.5 Al_2O_2 + 0.5 O_2$	24.604	73.764
47	$AlO_2 <> 0.5 Al_2 O + 0.75 O_2$	2906.8	114.71
48	$Al_2O_3 <> Al_2O_2 + 0.5O_2$	4875.1	843.8
49	$Al_2 0_3 <> Al_2 0 + 0_2$	4417.4	1182.6
50	$Al_2 0_2 <> Al_2 0 + 0.5 0_2$	3474	299.25
51	$SiO_2 <> SiO + 0.5 O_2$	3184.2	735.54
52	$Co_3O_4 <> 3CoO + 0.5O_2$	1166.1	197.78
53	$CrO_3 <> CrO_2 + 0.5 O2$	7.7802	154.61
54	$CrO_3 <> CrO + O_2$	2547.1	651.31
55	$KO_2 <> 0.5 K_2O_2 + 0.5 O_2$	1158.8	22.337
56	$K_2O_2 <> K_2O + 0.5O_2$	1343.7	167.17
57	$KO_2 <> KO + 0.5O_2$	1871.2	300.17
58	$KO_2 <> 0.5 K_2O + 0.75 O_2$	1304	96.809
59	$KO <> 0.5 K_2O + 0.25 O_2$	2345.2	-196.81
60	$CaO_2 <> CaO + 0.5O_2$	277.86	18.128
61	$TiO_2 <> 0.5 Ti_2O_3 + 0.25 O_2$	3864.6	161.3
62	$Ti_2O_3 <> 2 TiO + 0.5 O_2$	5120.6	407.32
63	$Ti_3O_5 <> 1.5 Ti_2O_3 + 0.25 O_2$	26855	1477.6
64	$Ti_40_7 <> 2 Ti_20_3 + 0.5 02$	6042.6	230.33
65	$TiO_2 <> TiO + 0.5O_2$	4484.6	358.38
	$TiO_2 <> 0.33333 Ti_3O_5$		
66	$+ 0.16667 0_2$	3152.6	123.72
67	$TiO_2 <> 0.25 Ti_4O_7 + 0.125 O_2$	3018.8	88.533
68	$Ti_3O_5 <> 3 TiO + O_2$	5728.7	691.21
69	$Ti_4O_7 <> 4 TiO + 1.5 O_2$	5306.5	1068.3

	$Ti_4O_7 <> 1.3333 Ti_3O_5$		
70	$+ 0.16667 O_2$	3544.2	140.81
71	$VO_2 <> 0.5 V_2O_3 + 0.25 O_2$	3019.1	-241.06
72	$V_2O_3 <> 2VO + 0.5O_2$	4015.8	318.46
73	$VO_2 <> VO + 0.5 O_2$	2080.8	-99.259
74	$CrO_2 <> CrO + 0.5O_2$	3970.1	510.35
75	$GaO' <> 0.5 Ga_2O + 0.25 O_2$	4079.2	-222.39
76	$Ga_2O_3 <> Ga_2O_2 + O_2$	2720.3	762.97
77	$Ga_2O_3^2 <> 2GaO_4 + 0.5O_2$	3105.2	1166.1
78	$GeO_2 <> GeO + 0.5 O_2$	1988.5	463.65
79	$As_2O_2 <> 2AsO + 0.5O_2$	9.1384	246
80	$As_2O_5 <> 2As_0 + 1.5O_2$	1230.3	752.14
81	$A_{S_2O_2} <> 4 A_{S_2O_2} + 0_{O_2}$	1366 7	925 76
82	$As_2O_2 \leq> As_2O_2 + O_2$	90782	9 90F+05
83	$A_{S_2O_5} < -> 0.5 A_{S_2O_5} + 0.5 A$	1062 5	299 57
Q/	$S_{2}O_{5} < S_{2}O_{5} < S_{$	1002.5	255.57
04	Pb0 <> 05 Pb 0 + 0.75 0	1/11 2	201.10
00	$RDO_2 <> 0.3 RD_2 O + 0.73 O_2$	1411.5	1022.0
80 07	$210_2 <> 210 + 0.50_2$	4074	1023.9
8/	$ND_2O_5 <> 2 NDO_2 + 0.5 O_2$	3054	331.03
88	$ND_2U_5 <> 2 NDU + 1.5 U_2$	4333.3	953.56
89	$NbO_2 <> NbO + 0.5 O_2$	4///.5	317.97
90	$M_{0}O_{2} <> M_{0}O + 0.5 O_{2}$	3376.8	/3/.4/
91	$MoO_3 <> MoO_2 + 0.5O_2$	4103.4	218.94
92	$MoO_3 <> MoO + O_2$	3496.9	865.24
93	$Tc_2O_7 <> 2 TcO_2 + 1.5 O_2$	995.25	158.82
94	$Tc_2O_7 <> 2 TcO_3 + 0.5 O_2$	393	34.149
95	$TcO_3 <> TcO_2 + 0.5 O_2$	1227	42.06
96	$RuO_4 <> RuO_2 + O_2$	10.621	275.75
97	$RuO_3 <> RuO_2 + 0.5 O_2$	2970.7	-139.11
98	$RuO_4 <> RuO_3 + 0.5 O_2$	1155.8	100.99
99	$\ln_2 0_3 <> \ln_2 0 + 0_2$	2300.2	784.9
100	$SnO_2 <> SnO + 0.5 O_2$	2633.7	285.79
101	$Sb_2O_3 <> 2 SbO + 0.5 O_2$	1177.9	409.1
102	$Sb_4O_6 <> 4 SbO + O_2$	1135.2	768.69
103	$CeO_2 <> CeO + 0.5 O_2$	3915.9	771.64
	$PrO_2 <> 0.14286 Pr_7O_{12}$		
104	$+ 0.142860_{2}$	690.92	13.759
105	$Pr_7O_{12} <> 3.5 Pr_2O_3 + 0.75 O_2$	1131.4	186.46
106	$PrO_2 <> 0.5 Pr_2O_3 + 0.25 O_2$	947.26	35.203
107	$C_{s}O_{2}^{-} <> 0.5 C_{s}O_{2}^{-} + 0.75 O_{2}^{-}$	1452.7	85.226
108	$La_2 O_3 <> 2 La O + 0.5 O_2$	4106.9	1274.2
109	$TbO_{2} <> 0.5 Tb_{2}O_{2} + 0.25 O_{2}$	765.24	39.378
110	$TbO_{1,72} <> 0.5 Tb_{2}O_{2} + 0.11 O_{2}$	931.21	20.02
111	$TbO_{1,01} <> 0.5 Tb_2O_2 + 0.155 O_2$	928.46	28,928
112	$ThO_2 <> ThO_{1.72} + 0.14 O_2$	641.59	18,716
113	$ThO_2 <> ThO_{1.72} + 0.095 O_2$	504.15	9,7468
114	$ThO_{1.01} <> ThO_{1.01} + 0.045 O_{2}$	922.33	8,8912
115	$ThO_{2} <> ThO + 0.5O_{2}$	4991	1046 7
		1001	1040.7

116	$U_4O_9 <> 4 UO_2 + 0.5 O_2$	2856.5	101.48
117	$PuO_2 <> 0.5 Pu_2O_3 + 0.25 O_2$	2220.4	163.99
118	$Pu_2O_3 <> 2 PuO + 0.5 O_2$	9.4951	-1333.5
119	$PuO_2^{-} <> PuO + 0.5 O_2^{-}$	6713.8	372.18
120	$Ta_2 O_5 <> 2 TaO_2 + 0.5 O_2$	4030.8	1222.4
121	$Ta_{2}O_{5} <> 2 TaO + 1.5 O_{2}$	4518.8	2004.3
122	$T_{a}O_{a} <> T_{a}O_{a} + 0.5 O_{a}$	5459.3	430.12
	$W_2Q_c <> 0.66667 W_2Q_0$	0.00.0	
123	$+ 0.333330_{2}$	36.217	-64.501
124	$W_2 O_c <> 2 W O_2 T_2 + 0.28 O_2$	1905.9	-363.04
125	$W_2 O_c <> 2 W O_{2,0} + 0.1 O_2$	2023.9	-433.11
126	$W_2 O_6 <> 2 W O_2 O_6 + 0.04 O_2$	2073 2	-459 17
127	$W_2O_6 <> 2WO_2 + O_2$	153 92	-13 651
122	$W_2O_6 < -> 2WO_2 + O_2$	4505	1800 0
120	$W_2O_6 < 2WO + 2O_2$ $W_1O_1 <> 1.3333 W_1O_1$	4303	1850.5
129	$1.5555 W_3 0_8$	2956 7	485.6
120	$W_1 O_{12} <> 4 WO_{12} + 0.56 O_{2}$	1563 1	-201.88
121	$W_{4}O_{12} < 24WO_{2.72} + 0.50U_{2}$	1957 1	-251.88
122	$W_{4}O_{12} <> 4WO_{2.9} + 0.2O_{2}$	1059.5	-424.03
122	$W_{4}O_{12} <> 4 WO_{2.96} + 0.08 O_2$	1930.3	-4/4.JZ 270 /
124	$W_4O_{12} <> 4WO_2 + 2O_2$	3233	320.4 4316 E
1254	$W_{4}O_{12} <> 4WO + 4O_{2}$	2512.0	4210.3
120	$W_{3}U_{9} <> W_{3}U_{8} + 0.5U_{2}$	1610.1	294.05
130	$W_{3}U_{9} <> 3 WU_{2.72} + 0.42 U_{2}$	1010.1	-289.73
137	$W_3 U_9 <> 3 W U_{2.9} + 0.15 U_2$	1840.5	-391.21
138	$W_3 U_9 <> 3 W U_{2.96} + 0.06 U_2$	1924.3	-429.16
139	$W_3 O_9 <> 3 W O_2 + 1.5 O_2$	-1443.2	426.06
140	$W_3 O_9 <> 3 W O + 3 O_2$	4186.2	3096
1 1 1	$WO_{2.72} <> 0.33333 W_3 O_8$	22424	404 77
141	$+ 0.0266670_2$	2242.1	184.77
140	$WO_{2.9} <> 0.33333 W_3 O_8$	2220 6	220.21
142	$+ 0.1166/0_2$	2329.6	220.21
1/12	$WO_{2.96} <> 0.33333 W_3 O_8$	2271 0	222 10
143	$+ 0.1400/0_2$	2371.0	233.10
144	$W_{3}O_{8} <> 3 WO_{2} + O_{2}$	474.07	-59.700
145	$W_3 U_8 <> 5 W U + 2.5 U_2$	4271.8	2801.0
140	$WO_3 <> 0.33333 W_3O_8$	2020 6	125.05
140	$+ 0.1000/0_2$	2939.0	135.05
147	$WO_{2.9} <> WO_{2.72} + 0.09 O_2$	2875.1	37.887
148	$WO_{2.96} <> WO_{2.72} + 0.12 O_2$	2982	51.835
149	$WO_{2.72} <> WO_2 + 0.36 O_2$	15.558	-406.57
150	$WO_{2.72} <> WO + 0.86 O_2$	3760.5	1072.2
151	$WO_3 <> WO_{2.72} + 0.14 O_2$	15276	893.93
152	$WO_{2.96} <> WO_{2.9} + 0.03 O_2$	3320.5	13.78
153	$WO_{2.9} <> WO_2 + 0.45 O_2$	14.222	-481.31
154	$WO_{2.9} <> WO + 0.95 O_2$	3721.1	1113.1
155	$WO_3 <> WO_{29} + 0.05O_2$	19116	1408.6
1	5 2.7 2		
120	$WO_{2.96} <> WO_2 + 0.48 O_2$	3709.7	-0.41559

160	$WO_3 <> WO_{2.96} + 0.02 O_2$	20129	1549
161	$WO_2 <> WO + 0.5 O_2$	3715.4	1130.4
162	$WO_3 <> WO_2 + 0.5 O_2$	13.344	-532.46
163	$WO_3 <> WO + O_2$	4069.5	1026.6
164	$\text{ReO}_3 <> \text{ReO}_2 + 0.5 \text{O}_2$	1775.3	124.29
165	$\text{Re}_2\text{O}_7 <> 2 \text{ReO}_3 + 0.5 \text{O}_2$	37.466	-225.19
166	$\text{Re}_2 \text{O}_7 <> 2 \text{ReO}_2 + 1.5 \text{O}_2$	7842.2	527.61
167	$Mn_2O_3 <> 2 Mn + 1.5 O_2$	3450.2	902.63
168	$Mn_3O_4 <> 3 Mn + 2 O_2$	3641.1	1421.1
169	$V_2 O_5 <> 2V + 2.5O_2$	4028.1	1463.3
170	$V_2 O_4 <> 2V + 2O_2$	5116.8	1146.3
171	$BaO_2 <> Ba + O_2$	47372	61591
172	$BaO <> Ba + 0.5 O_2$	-1949.6	985.31
173	$Cu_2 0 <> 2 Cu + 0.5 0_2$	2477.6	110.2
174	$CuO <> Cu + 0.5 O_2$	1647	157.89
175	$Fe_2O_3 <> 2Fe + 1.5O_2$	2945.3	920.67
176	$Fe_3O_4 <> 3 Fe + 2 O_2$	3633.8	996.77
177	$SrO <> Sr + 0.5 O_2$	6639.3	465.98
178	$MnO <> Mn + 0.5O_{2}$	4849.7	377.29
179	$Rh_2O_3 <> 2 Rh + 1.5 O_2$	1304.3	332.07
180	$RhO_{2}^{2} <> Rh + O_{2}^{2}$	-1665.7	352.25
181	$Li_2O_2^- <> 2Li + O_2^-$	91553	1.03E+06
182	$Li_2 0 <> 2 Li + 0.5 0_2$	10.55	-1219.2
183	$Cr_2O_3 <> 2 Cr + 1.5 O_2$	4374.6	1003.3
184	$PbO_{2} <> Pb + O_{2}$	1322.6	265.29
185	$Sb_2O_5 <> 2 Sb + 2.5 O_2$	1806	1028.1
186	$PbO <> Pb + 0.5 O_2$	20.531	-520.99
187	$Sb_2O_4 <> 2Sb + 2O_2$	2180.7	933.33
188	$UO_3 <> U + 1.5 O_2$	4461.9	1195
189	$U_3 O_8 <> 3 U + 4 O_2$	5458.1	3136.7
190	$Na_2O <> 2 Na + 0.5 O_2$	3760.6	444.23
191	$Na_2O_2 <> 2 Na + O_2$	2353	496.77
192	$NaO_2 <> Na + O_2$	1957.5	197.2
193	$AlO_2 <> Al + O_2$	7513.1	275.08
194	$Al_2 0_3 <> 2 Al + 1.5 0_2$	5767.5	1331
195	$Al_2 O_2 <> 2 Al + O_2$	7701.1	618.06
196	$Al_2 0 <> 2 Al + 0.5 0_2$	-699.32	216.84
197	$SiO_2 <> Si + O_2$	4680.5	884.81
198	$SiO <> Si + 0.5O_2$	-1017.8	129.11
199	$CoO <> Co + 0.5 \overline{O}_2$	3336.5	190.79
200	$Co_3O_4 <> 3Co + 2O_2$	2299.9	821.2
201	$FeO <> Fe + 0.5 O_2$	4296.4	250.45
202	$MnO_2 <> Mn + O_2$	2632.5	529.49
203	$CrO_3 <> Cr + 1.5O_2$	2775.3	514.5
204	$K_2 O_2 <> 2 K + O_2$	1951.4	787.56
205	$KO_2 <> K + O_2$	2038.1	251.82
206	$LiO <> Li + 0.5O_2$	1358.3	-71.349
207	$NaO <> Na + 0.5 O_2$	1498.3	-69.871

208	$KO <> K + 0.5 O_2$	1358.6	-58.286
209	$K_2 0 <> 2 K + 0.5 0_2$	2988.4	364.67
210	$CaO_2 <> Ca + O_2$	4367.3	599.98
211	$CaO <> Ca + 0.5 O_2$	6837.4	496.72
212	$Ti_2O_3 <> 2 Ti + 1.5 O_2$	6452.5	1296.2
213	$TiO_2 <> Ti + O_2$	5727	795.11
214	$Ti0^{-} <> Ti + 0.5^{-}0_{2}$	7330	438.19
215	$Ti_3O_5 <> 3 Ti + 2.5 O_2$	6693.9	1999.2
216	$V_2 0_3 <> 2V + 1.50_2$	5347.7	1055.6
217	$V02^{2} <> V + 0_{2}$	-2264.8	534.23
218	$VO <> V + 0.5 O_2$	6202.2	376.28
219	$CrO_2 <> Cr + O_2$	35037	14412
220	$CrO <> Cr + 0.5 O_2$	1962.8	-161.07
221	$Ga_{2}O <> 2 Ga + 0.5 O_{2}$	-241.37	156.66
222	$GaO <> Ga + 0.5 O_{2}$	2248.3	-137.62
223	$G_{a_2}O_{a_3} <> 2 G_{a_3} + 15 O_{a_3}$	25557	6876.9
224	$GeO_{2} <> Ge + O_{2}$	2920.6	535 33
225	$GeO_2 <> Ge + 0.5 O_2$	-532.64	57,143
226	$AsO <> As + 0.5 O_{2}$	-613 36	78 044
227	$A_{S_2}O_2 <> 2 A_S + 15 O_2$	38 653	40 797
228	$A_{S_2}O_{T_1} <> 2A_{S_2} + 25O_{S_2}O_{T_2}$	1942 7	849 73
229	$A_{S_2O_2} <> 4A_{S_2} + 3O_{2}$	2670.2	2227 4
230	$\operatorname{SeO}_{2} <> \operatorname{Se}_{2} + \operatorname{O}_{2}$	1163 7	213.84
230	$se0_2 <> se + 0.50_2$	855 19	-48 541
231	$Bh_{2}O <> 2Bh + 05O_{2}$	2866.4	350 51
232	$BbO_{2} <> Bb + O_{2}$	2000.4	220.91
233	$\operatorname{Sr}O_2 <> \operatorname{Sr} + O_2$	A396 A	220.5
234	$7r0_{2} <> 7r + 0_{2}$	5080 1	1005 1
235	$2rO_2 < 2r + 0.5O_2$	764 4	-54 53
230	$Nh_{0} <> 2Nh + 250$	/04.4	1566 1
227	$Nb_{2}O_{5} < 2Nb + 2.5O_{2}$	4JJJ.J 5/107 0	620 50
220	$NbO_2 <> Nb + O_2$	5427.2 6777.6	212.05
233	$M_{00} <> M_{0} + 0$	2272.0	512.95
240	$MOO_2 <> MO + O_2$	2500 4	320.95
241	$M_{00} <> M_{0} + 0.5 U_{2}$	2402 C	-219.00
242	$MOO_3 <> MO + 1.5 O_2$	5492.0 1050 5	040.02
243	$10_20_7 <> 210 + 3.50_2$	1950.5	954.38
244	$T_{cO_2} <> T_{c} + U_2$	2357.8	404.38
245	$1cO_3 <> 1c + 1.5O_2$	/2/53	5.81E+05
240	$RUO_2 <> RU + O_2$	1/97.7	208.37
247	$\operatorname{RuO}_4 <> \operatorname{Ru} + 2\operatorname{O}_2$	1070.6	1/9./
248	$RuO_3 <> Ru + 1.5 O_2$	977.36	/8.112
249	$\ln_2 0 <> 2 \ln + 0.5 0_2$	-383.31	121.89
250	$\ln_2 O_3 <> 2 \ln + 1.5 O_2$	4498.1	574.09
251	$\operatorname{SnO}_2 <> \operatorname{Sn} + \operatorname{O}_2$	2/39.1	534.62
252	$SnU <> Sn + 0.5 U_2$	28/1.1	246.37
253	$SDU <> SD + 0.5 U_2$	31935	/043.2
254	$Sb_2O_3 <> 2Sb + 1.5O_2$	2864.4	606.9
255	$Sb_4O_6 <> 4Sb + 3O_2$	2734.7	1279.9

256	$CeO_2 <> Ce + O_2$	5424.1	951.45
257	$CeO <> Ce + 0.5 O_2$	-1258.3	181.39
258	$Pr_7O_{12} <> 7 Pr + 6 O_2$	5740.6	5412.4
259	$PrO_2 <> Pr + O_2$	7551.1	288.06
260	$Pr_2O_3 <> 2 Pr + 1.5 O_2$	6701	1400.1
261	$C_{s}O_{2} <> C_{s} + O_{2}$	2100.6	214
262	$C_{s_2}O_{s_2} <> 2C_{s_1} + 0.5O_{s_2}$	2758.5	259.26
263	$LaO <> La + 0.5 O_2$	-1256.1	159.57
264	$La_2 0_2 <> 2 La + 1.5 0_2$	6647.6	1598.3
265	$Th_2O_2 <> 2 Th + 1.5 O_2$	5993.1	2457.9
266	$TbO_2 <> Tb + O_2$	5136.7	838.39
267	$TBO_{1,70} <> TB + 0.86 O_{2}$	6449 7	676.01
268	$TBO_{1.72} <> TB + 0.00002$	5627.5	841 93
269	$ThO_{1,81} <> Th + O_{2}$	6215.9	1171 2
200	$ThO_2 <> Th + 0.5 O_2$	-366 19	13 927
270	11.0 <> 4.11 + 4.5.0	5787.6	43.527
271	$U_4 U_9 <> U + 0$	7/80	773 /0
272	$P_{11}O_{12} <> 2P_{11} + 15O_{12}$	4 2962	-3/11 2
273	$P_{u_{2}}O_{3} < P_{u_{1}} + O_{2}$	6/75 1	856 70
274	$P_{1002} < P_{11} + 0.50$	6307 5	/196 57
275	$T_{10} = -2$ $T_{10} + 0.5 O_2$ $T_{20} = -2 T_{20} + 250$	5250.2	490.37 1710 Q
270	$T_{a_2}O_5 <> T_{a_1} + 0$	2047.0	1719.8
277	$T_{a}O_{2} < > T_{a} + O_{2}$	-2047.5	429.39
270	$1a0 <> 1a + 0.5 0_2$	2304.2	-1/5./9
2/9	$W_2 O_6 <> 2 W + 3 O_2$	4192.8	1243.5 2000 G
200	$W_4 O_{12} <> 4 W + 0 O_2$	2092.1	2900.0
201	$W_3 O_9 <> 3 W + 4.3 O_2$	2027.7	2112.9 1920 F
202	$W_3 U_8 <> 5 W + 4 U_2$	3883.9	1820.5
283	$WO_{2.72} <> W + 1.36 O_2$	3328.1	712.03
204	$WO_{2.9} <> W + 1.45 U_2$	3301.7	750.79
285	$WO_{2.96} <> W + 1.48 O_2$	3302	764.57
286	$WO_2 <> W + O_2$	3250.1	601.72
287	$WO <> W + 0.5 U_2$	52/9./	-309.93
288	$WO_3 <> W + 1.5 O_2$	3686.3	/11.58
289	$\text{ReO}_3 <> \text{Re} + 1.5 \text{O}_2$	2168.6	539.15
290	$\operatorname{ReO}_2 <> \operatorname{Re} + \operatorname{O}_2$	2319.3	415.47
291	$\text{Re}_2\text{O}_7 <> 2 \text{ Re} + 3.5 \text{ O}_2$	2777	1006.8
292	$IrO_2 <> Ir + O_2$	1311.5	226.02
293	$IrO_3 <> Ir + 1.5O_2$	26.102	47.791
294	$Ti_40_7 <> 4 Ti + 3.5 0_2$	6417.8	2812
295	$Pb_3O_4 <> 3 Pb + 2 O_2$	1803.8	653.75
296	BeO $<>$ Be + 0.5 O ₂	8481.4	405.64
297	$MgO <> Mg + 0.5 O_2$	5725.6	486.51
298	$Sc_2O_3 <> 2 Sc + 1.5 O_2$	6839.4	1608.6
299	NiO $<>$ Ni + 0.5 O ₂	2577.6	196.57
300	$ZnO <> Zn + 0.5O_2$	3492.8	280.17
301	$Y_2O_3 <> 2Y + 1.5O_2$	5998.4	1985.2
302	$PdO <> Pd + 0.5 O_2$	1045.9	115.33
303	$Ag_2O <> 2 Ag + 0.5 O_2$	425.45	30.527

304	$CdO <> Cd + 0.5 O_2$	2411.2	247.77
305	$TeO_2 <> Te + O_2$	1765.1	274.45
306	$TeO <> Te + 0.5 O_2$	1117.1	-44.591
307	$CsO <> Cs + 0.5 O_2^{-1}$	1271.3	-50.874
308	$Cs_2O_3 <> 2Cs + 1.5O_2$	2160.9	419.78
309	$HfO_2 <> Hf + O_2$	7903.6	848.26
310	$Ce_2O_2 <> 2Ce_1 + 1.5O_2$	7385.9	1596.4
311	$PrO_{1,022} <> Pr + 0.9165 O_2$	60388	1.55E+05
312	$Nd_2O_2 <> 2 Nd + 1.5 O_2$	5939.6	1824.6
313	$Sm_2O_2 <> 2.Sm + 1.5.O_2$	5033	2452.5
314	$E_{\text{H}_2O_2} <> 2E_{\text{H}_2} + 15O_2$	5797 4	1371.6
315	$Gd_2O_2 <> 2Gd + 15O_2$	5415 9	2576.2
316	$D_{V_1}O_{V_2} <> 2 D_{V_1} + 15 O_{V_2}$	6512	1638.3
217	$H_0 0 <> 2H_0 + 150$	6020 3	1000.7
317 210	Fr 0 <> 2Fr + 150	6204.4	1012 E
210	$EI_2O_3 <> 2 EI + 1.5 O_2$	0204.4 EQE1 0	1015.5 1026 E
319	$111_20_3 <> 2111 + 1.50_2$	5851.8	1930.5
320	$10_20_3 <> 210 + 1.50_2$	5993.7	1814.3
321	$Lu_2 U_3 <> 2 Lu + 1.5 U_2$	5916.6	1901.6
322	$PtO_2 <> Pt + O_2$	28.433	27.12
323	$Au_2O_3 <> 2Au + 1.5O_2$	41./23	30.735
324	$HgO <> Hg + 0.5 O_2$	724.85	145.56
325	$TI_2O_3 <> 2TI + 1.5O_2$	1355	379.15
326	$Tl_2O <> 2Tl + 0.5O_2$	4319.1	27.197
327	$Bi_2O_3 <> 2 Bi + 1.5 0 2$	29387	13995
328	$NpO_2 <> Np + O_2$	5433.3	964.47
329	$Al(OH)_3 <> 0.5 Al_2O_3 + 1.5 H_2O$	317.67	75.328
330	$Ba(OH)_2 <> BaO + H_2O$	1319.9	100.64
331	$Be(OH)_2 <> BeO + H_2O$	353.74	52.118
332	$Cd(OH)_2 <> CdO + H_2O$	388.8	77.2
333	$Ca(OH)_2 <> CaO + H_2O$	794.14	99.377
334	$CsOH <> 0.5 Cs_2O + 0.5 H_2O$	3816.5	147.59
335	$Co(OH)_2 <> CoO + H_2O$	368.26	59.09
336	$Cu(OH)_2 <> CuO + H_2O$	312.75	44.949
337	$Cs_2(OH)_2 <> Cs_2O + H_2O$	3566.3	298.64
338	$Li_2(OH)_2 <> Li_2O + H_2O$	30.956	320.97
339	$K_2(OH)_2 <> K_2O + H_2O$	2902.8	161.22
340	$Na_2(OH)_2 <> Na_2O + H_2O$	32.987	134.33
341	$Fe(OH)_2 <> FeO + H_2O$	341.17	54.436
342	$Fe(OH)_2 <> 0.5 Fe_2O_2 + 1.5 H_2O_2$	218.04	47.351
343	$LiOH <> 0.5 Li_{2}O + 0.5 H_{2}O$	1312.5	25.64
344	$Mg(OH)_2 <> MgO + H_2O$	540.99	77.818
345	$KOH <> 05 K_{0}O + 05 H_{0}O$	3530 1	99 207
346	$N_{2}OH <> 0.5 N_{2}O + 0.5 N_{2}O$	2264.4	93 979
347	$r(0H) <> r(0 + H_0)$	1013 6	89.77
34.0	$B_2(0, < - > B_20 + C)$	1811 1	212.44
340	$d_{1003} < d_{100} + d_{100}$	567 25	212.30
340	$C_1 C_0 <> C_1 O + C_2$	1160	166 55
250	$C_{\alpha} C_{\alpha} = -2 C_{\alpha} C_{\alpha} + C_{\alpha} C_{\alpha}$	1015 1	140.00
221	$L_{22}L_{23} \subset2 L_{22}U + LU_{2}$	4043.1	149.00

$552 10_2 \\ C0_4 < -2 2100 + C0_2 011.28 82.85$	
$353 \text{ FeCO}_3 <> \text{FeO} + \text{CO}_2$ 412.68 75.133	
$354 \text{ PbCO}_3 <> \text{ PbO} + \text{ CO}_2$ 583.52 83.031	
$355 \text{ Li}_2\text{CO}_3 <> \text{Li}_2\text{O} + \text{CO}_2 \qquad 1884.8 \qquad 190.13$	
$356 \text{ MgCO}_3 <> \text{ MgO} + \text{ CO}_2$ 580.58 98.803	
$357 \text{ MnCO}_3 <> \text{ MnO} + \text{ CO}_2$ 618.73 112.59	
$358 \text{ NiCO}_3 <> \text{ NiO} + \text{ CO}_2$ 370.68 60.904	
$359 K_2CO_3 <> K_2O + CO_2$ 13.946 -867.91	
$360 \text{ Rb}_2\text{CO}_3 <> \text{ Rb}_2\text{O} + \text{ CO}_2 $ 5.8455 -772.73	
$361 Ag_2CO_3 <> Ag_2O + CO_2$ 487.22 79.348	
$362 \text{ Na}_2\text{CO}_3 <> \text{NA}_20 + \text{CO}_2$ 5.332 -751.22	
$363 \text{ SrCO}_3 <> \text{ SrO} + \text{ CO}_2$ 1432.2 199.1	
$364 ZnCO_3 <> ZnO + CO_2 \qquad 393.48 \qquad 68.277$	

Figure S1. Comparison of the estimated equilibrium temperature and reaction enthalpy with those obtained by Pardo et al. [1] for select redox (A-B), hydroxide (C-D), and carbonate reaction (E-F) systems.

S2 Reactions obtained after thermodynamic screening

Table S2 lists the reactions obtained after thermodynamic screening and properties including equilibrium temperature, reaction enthalpy, average heat capacities of A and B, and densities of A and B. Average heat capacity of A ($\overline{Cp_A}$) is estimated as follows:

$$\overline{Cp_A} = \frac{\int_{T^L}^{T^U} Cp_A(T) \, dT}{T^U - T^L}$$

where $Cp_A(T)$ is the heat capacity of A as a function of temperature, $T^L = \max (T^{eq} - 500, 250)$ and $T^U = \min(1750, T^{eq} + 500)$.

 Table S2. List of reactions obtained after performing thermodynamic screening and their corresponding properties.

No.	Reactions	T ^{eq}	ΔH ^r	$\overline{Cp_A}$ (kJ/	Cp _B (kJ	ρ _A (g/	ρ _B (g/	Price
		(K)	(kJ/mol)	kg-K)	/kg-K)	cm³)	cm³)	(\$/MT)
1	Mn_2O_3/Mn_3O_4	1174.1	32.136	0.908	0.870	4.72	4.59	1837
2	Mn_2O_3/MnO	1646.7	173.85	1.002	0.820	4.72	5.19	1837
3	MnO_2/Mn_2O_3	717.69	39.764	0.815	0.789	4.01	4.72	2270
4	MnO_2/Mn_3O_4	809.44	56.15	0.837	0.792	4.01	4.59	2270
5	BaO ₂ /BaO	1015.3	80.479	0.516	0.372	5.39	5.75	1364
6	CuO/Cu_2O	1304.9	64.907	0.725	0.627	5.94	6.03	6220
7	Fe_2O_3/Fe_3O_4	1613.1	77.754	0.898	0.868	5.07	4.95	805
8	MnO_2/MnO	1178.7	131.17	0.900	0.784	4.01	5.19	2270
9	Pb ₃ O ₄ /PbO	638.72	57.949	0.278	0.135	8.22	8.47	8500
10	$UO_{3}/U_{3}O_{8}$	860.96	34.881	0.344	0.361	6.57	8.3	77093
11	$UO_{3}/U_{4}O_{9}$	1340.3	98.232	0.364	0.362	6.57	10.97	77093
12	UO_{3}/UO_{2}	1544.4	139.18	0.369	0.336	6.57	11.26	77093
13	Na_2O_2/Na_2O_2	1141.2	87.077	1.454	1.565	2.52	2.35	150
14	NaO ₂ /Na ₂ O	632.37	46.146	1.602	1.387	2.19	2.35	150
15	Co_3O_4/CoO	1166.1	197.78	0.967	0.775	5.4	6.31	36132
16	KO_2/K_2O_2	1158.8	22.337	1.304	0.195	2.22	2.31	436
17	TcO_3/TcO_2	1227	42.06	1.435	0.622	3.64	6.58	6000000
18	$PrO_{2}/Pr_{7}O_{12}$	690.92	13.759	0.532	0.416	6.12	6.08	52200
19	Pr_7O_{12}/Pr_2O_3	1131.4	186.46	0.458	0.453	6.08	6.09	52200
20	PrO_2/Pr_2O_3	947.26	35.203	0.576	0.437	6.12	6.09	52200
21	CsO_2/Cs_2O	1452.7	85.226	0.696	0.405	3.73	4.05	2227600
22	TbO_2/Tb_2O_3	765.24	39.378	0.398	0.367	7.74	7.84	501000
23	$TbO_{1.72}/Tb_2O_3$	931.21	20.02	0.412	0.381	7.78	7.84	501000
24	$TbO_{1.81}/Tb_2O_3$	928.46	28.928	0.410	0.381	7.8	7.84	501000
25	$TbO_{2}/TbO_{1.72}$	641.59	18.716	0.390	0.382	7.74	7.78	501000
26	TbO _{1.81} /TbO _{1.72}	922.33	8.891	0.409	0.411	7.8	7.78	501000
27	Rh_2O_3/Rh	1304.3	332.07	0.637	0.333	7.97	12.03	72000000
28	IrO_2/Ir	1311.5	226.02	0.376	0.165	11.3	21.93	43000000
29	PdO/Pd	1045.9	115.33	0.467	0.283	7.79	11.41	33000000
30	Ba(OH) ₂ /BaO	1319.9	100.64	0.822	0.388	4.46	5.75	1981
31	$Ca(OH)_2/CaO$	794.14	99.377	1.519	0.917	2.2	3.29	150
32	LiOH/Li ₂ O	1312.5	25.64	3.634	3.084	1.4	1.96	15246
33	$Sr(OH)_2/SrO$	1013.6	89.44	1.216	0.54	3.35	4.88	2111

34	CaCO ₃ /CaO	1169	166.55	1.29	0.971	2.61	3.29	100
35	Pb ₂ CO ₄ /PbO	611.28	82.83	0.385	0.139	6.87	8.47	2800
36	PbCO ₃ /PbO	583.52	83.031	0.492	0.144	6.27	8.47	2800
37	$MgCO_3/MgO$	580.58	98.803	1.302	1.159	2.9	3.47	242
38	$MnCO_3/MnO$	618.73	112.59	0.970	0.713	3.56	5.19	1837
39	SrCO ₃ /SrO	1432.2	199.1	0.935	0.572	3.48	4.88	863

S3 Power cycle

We employ supercritical CO_2 Brayton cycle with a simple recuperative configuration consisting of a compressor, turbine, recuperator, heater/reactor, and cooler. The schematic of the cycle and temperature-entropy diagram of the cycle is shown in Figure S2.

Figure S2. Schematic of s-CO2 Brayton cycle with a simple recuperative configuration. (B) T-S diagram of the s-CO2 power cycle.

S4 Model equations

An optimization model is developed to assess the economic viability of various reactions. The objective of the model is to minimize the levelized cost of electricity. The constraints of the plant include performance considerations of plant components, mass and energy balances, equipment design, and cost calculations. Based on Figures 1 and 2, we develop process models for the three reactions. However, for the sake of brevity, process model for carbonate reactions employing closed configuration (Figure S3) is provided in this section.

Notation

We denote indices by lower-case italic roman characters, variables as upper-case italic roman characters, and sets and subsets by upper-case bold roman characters. The parameters are denoted by italic Greek characters.

Figure S3. Process flowsheet for carbonate reactions.

Sets and Subsets

$i \in \mathbf{I}$	Units
I ^R	Reaction units
I ^{TK}	Storage tanks
<i>j</i> ∈ J	Streams
JPS ^{IN}	Inlet process streams to unit <i>i</i>
JSi	Streams containing C from/to unit <i>i</i>
JPS _i out	Outlet process streams from unit <i>i</i>
JUS ^{IN}	Inlet utility streams to unit <i>i</i>
JUS _i out	Outlet utility streams from unit <i>i</i>
$k \in \mathbf{K}$	Components
K ^R	Components involved in reaction
K ^F	Components in fluid phase
$s \in \mathbf{S}$	Scenarios
Parameters	

ω_k	Molecular weight of component k (g/mol)
ν_k	Stoichiometry coefficient of component k
Cp_k	Specific heat capacity of component <i>k</i> (kJ/kg/K)
T^{eq}	Equilibrium temperature (K)
T^{amb}	Ambient temperature (K)
ΔH^r	Reaction enthalpy at <i>T^{eq}</i> (kJ/kg)
δ^{e}	External tube diameter in reactors (m)

δ^{in}	Internal tube diameter in reactors (m)
δ^{dc}	Distance between tube centers in reactors (m)
γ	Reaction conversion
$ ho_k$	Density of material <i>k</i> (kg/m ³)
ϵ^r	Void fraction in reactor
ϵ^{stk}	Void fraction in solid storage tanks
ζ^t	Thermal conductivity of tube wall (W/m/K)
ζ_k^f	Thermal conductivity of fluid $k \in \mathbf{K}^{\mathbf{F}}$ (W/m/K)
μ_k	Viscosity of component $k \in \mathbf{K}^{\mathbf{F}}$ (kg/m/s)
σ	Stefan-Boltzmann constant (W/m²/K ⁴)
ξ	Convective heat transfer coefficient of air (W/m ² /K)
ξ^{HTC}	Heat transfer coefficient in E1 (W/m²/K)
ψ^t	Emissivity of tube surface
ψ^b	Emissivity of bed
ϕ^{col}	concentration ratio of collector
α^{rec}	receiver solar absorptance
ψ^{rec}	receiver thermal emittance
λ^{CRF}	Capital recovery factor
v_s	Solar direct normal irradiance in scenario <i>s</i> (kW/m²)
θ^{conv}	Conveyor unit power consumption (kW/kg/s)
ϕ^{c}	Sensible heat of cooling of gas from $ au^{eq}$ to 298 K (kJ/kg)
ϕ^{comp}	Compression power to compress CO_2 from 1 bar to 75 bar (MW/kg/s)
$\lambda^{indirect}$	Indirect cost factor
λ^{cont}	Contingency cost factor
θ^{rate}	CSP plant rated capacity (MW)
$\theta^{rec,ref}$	Reference size of receiver (MWht)
δ^T	Minimum approach temperature during heat transfer (K)
κ_s^{day}	Duration of daytime in scenario s (h)
κ_s^{night}	Duration of nighttime in scenario <i>s</i> (h)
β^{rec}	Scaling factor of receiver
η^{col}	Collector efficiency
η^{bop}	Balance of plant efficiency (0.9, considering 10% parasitic load in the plant)
λ^{col}	Collector price (\$/m ²)
λ^{conv}	Conveyor price (\$/MW)
λ^{E1}	Price of E1 (\$/m ²)
λ^{comp}	Compressor price (\$/MW)
λ^{sens}	Sensible heat storage price (\$/MWh _t)
λ^{rec}	Receiver price at size $\theta^{r,ref}$ (\$/MWh _t)
λ^p	Power block price (\$/MW)
$\lambda^{reactor}$	Reactor price (\$/m ² of heat exchange area)

λ^{sm}	Storage media p	rice (\$/ton)
	o cor ago mo ana p	

- λ^{stk} Solid storage tank price (\$/m³)
- λ^{gtk} Gas storage tank price (\$/m³)
- $\lambda^{om, fix}$ Operation and maintenance, fixed cost (\$/MW/year)
- $\lambda^{om,vary}$ Operation and maintenance, variable cost (\$/MWh)
- π_s Occurrence frequency of scenario *s*

First stage variables

A ^{col}	Collector area (m ²)
A_i^r	Heat exchange area of reactor $i \in \mathbf{I}^{\mathbf{R}}$ (m ²)
A^{E1}	Heat exchange area of E1 (m ²)
CAPEX	Plant total capital cost (\$)
C^{conv}	Conveyor cost (\$)
C^{comp}	Compressor cost (\$)
C ^{sen}	Sensible heat storage cost (\$)
C^{TCES}	TCES system cost (\$)
LCOE	Levelized cost of electricity (¢/kWh)
M^{sm}	Storage media weight (ton)
OPEX	Annual operational cost (\$/year)
QT^{rec}	Receiver size (MWh _t)
V _i	Volume of unit $i \in \mathbf{I}^{\mathbf{R}} \cup \{STK1, STK2\} (m^3)$
L _i	Length of unit $i \in \mathbf{I}^{\mathbf{R}}$ (m)
W ^{ele}	Annual total electricity output (MWh/year)
T_j	Temperature of stream j (K)
TP_i	Pinch temperature in unit $i \in \mathbf{I}^{\mathbf{R}}$
AMTD _i	Average mean temperature difference between hot and cold streams in unit $i \in \mathbf{I}^{\mathbf{R}} \cup$
	E1 (K)

Second stage variables

$F_{j,k,s}$	Mass flow rate of component k in stream j under scenario s (kg/sec)
$Q_{i,s}$	Heat transfer rate in unit $i \in \mathbf{I}^{\mathbf{R}} \cup E1$ under scenario s (MW)
QS_s	Sensible heat stored under scenarios <i>s</i> (MWh)
$TO_{i,s}$	Average temperature of tube surface on the bed side of unit $i \in \mathbf{I}^{\mathbf{R}}$ under scenario s
H _{i,s}	Overall heat transfer coefficient of unit $i \in \mathbf{I}^{\mathbf{R}}$ under scenario s (W/m ² /K)
HO _{i,s}	Heat transfer coefficient of fluidized bed in unit $i \in \mathbf{I}^{\mathbf{R}}$ under scenario s (W/m ² /K)
HI _{i,s}	Convection heat transfer coefficient between tube surface and HTF in unit $i \in \mathbf{I}^{\mathbf{R}}$
	under scenario <i>s</i> (W/m²/K)
SRT _{i,s}	Solid residence time in unit $i \in \mathbf{I}^{\mathbf{R}}$ under scenario s (sec)
$U_{j,s}$	Superficial velocity of stream $j \in JUS_i^{IN} \cup JUS_i^{OUT} \cup JS_i^{C}$, $i \in I^R$ under scenario s
	(m/sec)
XB _{j,s}	Mole fraction of stream $j \in JPS_i^{OUT}$, $i \in I^R$ under scenario s (m/sec)

W_s^{day}	Daytime power generated under scenario s (MWh)
W_s^{night}	Nighttime power generated under scenario s (MWh)
P_s^{conv}	Conveyor power under scenario s (MW)
P_s^{comp}	Compressor power under scenario <i>s</i> (MW)
$QT_s^{curtail}$	Energy curtailed through heliostat defocus under scenario s (MWh)
Q_s^{HTF}	HTF thermal energy requirement during charging under scenario s (MW)
DT_s^c	Duration of daytime power generation (h)
NT_s^d	Duration of nighttime power generation (h)
E_s^{rec}	Receiver efficiency in scenario s
$E_s^{p,day}/E_s^{p,night}$	Daytime/ nighttime power block efficiency in scenario s

Equations

$$F_{j,k,s} = 0, \forall i \in \mathbf{I}, j \in \mathbf{JUS}_{\mathbf{i}}^{\mathbf{IN}} \cup \mathbf{JUS}_{\mathbf{i}}^{\mathbf{OUT}}, k \in \mathbf{K}^{\mathbf{R}}, s \in \mathbf{S}$$

$$\tag{1}$$

$$F_{7,k,s} = F_{5,k,s} + F_{1,k,s}, \forall k \in \mathbf{K}, s \in \mathbf{S}$$
(2)

$$T_1 = T_5 \tag{3}$$

$$T_5 \ge T_7 + 100 \tag{4}$$

$$F_{7,k,s} = F_{2,k,s} + F_{6,k,s}, \forall k \in \mathbf{K}, s \in \mathbf{S}$$
(5)

$$TP_i \ge T_j + \delta^T, \forall i = \text{R1}, j \in JPS_i^{OUT}, s \in S$$
 (6)

$$TP_i + \delta^T \le T_j, \forall i = \mathbb{R}^2, j \in \mathbf{JPS_i^{OUT}}, s \in \mathbf{S}$$
(7)

$$T_5 \ge T_8 + \delta^T \tag{8}$$

$$T_6 \ge T_9 + \delta^T \tag{9}$$

$$\sum_{j \in \mathbf{JUS}_{i}^{\mathbf{IN}}} F_{j,k,s} \cdot (T_7 - T_j) = 0, \forall k \in \mathbf{K}, i = Rec, s \in \mathbf{S}$$
(10)

$$E_{s}^{rec} = \alpha^{rec} - \frac{\psi^{rec} \cdot \sigma \cdot (T_{1}^{4}) + \xi \cdot (T_{1} - T^{amb})}{v_{s} \cdot \eta^{col} \cdot \phi^{col}}, \forall s \in \mathbf{S}$$

$$(11)$$

$$F_{j,k,s} = F_{j',k,s}, \forall i = E1 \cup \mathbf{I}^{\mathbf{R}}, j' \in \mathbf{JUS}_{\mathbf{i}}^{\mathbf{IN}}, j \in \mathbf{JUS}_{\mathbf{i}}^{\mathbf{OUT}}, k = \mathbf{K}, s \in \mathbf{S}$$
(12)

$$10^{3} \cdot Q_{i,s} = \sum_{k} F_{7,k,s} \cdot Cp_{k} \cdot (T_{5} - T_{7}), \forall i = Rec, s \in \mathbf{S}$$
(13)

$$10^{3} \cdot Q_{i,s} = \sum_{k} F_{10,k,s} \cdot Cp_{k} \cdot (T_{9} - T_{10}), \forall i = E1, s \in \mathbf{S}$$
(14)

$$T_8 \ge T_9 + \delta^T \tag{15}$$

$$T_{11} \ge T_{10} + \delta^T \tag{16}$$

$$10^{3} \cdot Q_{i,s} = \sum_{k} F_{8,k,s} \cdot (T_{8} - T_{11}), \forall i = E1, s \in \mathbf{S}$$
(17)

$$AMTD_i = \frac{T_8 + T_{11} - T_9 - T_{10}}{2}, \forall i = E1$$
(18)

$$A^{E1} \cdot \xi^{HTC} \cdot AMTD_{E1} \ge Q_{E1,s}, \forall s \in \mathbf{S}$$
⁽¹⁹⁾

$$(F_{j,B,s} - F_{j',B,s}) \cdot v_k \cdot \omega_k = (F_{j,k,s} - F_{j',k,s}) \cdot v_B \cdot \omega_B, \forall i \in \mathbf{I}^{\mathbf{R}}, j \in \mathbf{JPS_i^{OUT}}, j' \in \mathbf{JPS_i^{IN}}, k$$
(20)
= {A, C}, s \in S

$$F_{j,A,s} = (1 - \gamma) \cdot F_{j',A,s}, \forall i = \text{R1}, j \in \mathbf{JPS_i^{OUT}}, j' \in \mathbf{JPS_i^{IN}}, s \in \mathbf{S}$$

$$(21)$$

$$F_{j,B,s} = (1 - \gamma) \cdot F_{j',B,s}, \forall i = R2, j \in \mathbf{JPS_i^{OUT}}, j' \in \mathbf{JPS_i^{IN}}, s \in \mathbf{S}$$

$$(22)$$

$$F_{j,k,s} = F_{j',k,s}, \forall i \in \mathbf{I}^{\mathbf{R}}, j \in \mathbf{JUS}_{\mathbf{i}}^{\mathbf{OUT}}, j' \in \mathbf{JUS}_{\mathbf{i}}^{\mathbf{IN}}, k \in \mathbf{K}, s \in \mathbf{S}$$

$$(23)$$

$$10^{3} \cdot Q_{i,s} = (-F_{j,A,s} + F_{j',A,s}) \cdot \Delta H^{r} + \sum_{k \in \mathbf{K}^{\mathbf{R}}} [F_{j,k,s} \cdot Cp_{k} \cdot (T_{j} - T^{eq}) + F_{j',k,s} \cdot Cp_{k} \cdot (T^{eq} - (24))$$
$$T_{j'})], \forall i \in \mathbf{I}^{\mathbf{R}}, j \in \mathbf{JPS_{i}^{OUT}}, j' \in \mathbf{JPS_{i}^{IN}}, s \in \mathbf{S}$$

$$10^{3} \cdot Q_{i,s} = \sum_{k} F_{j,k,s} \cdot Cp_{k} \cdot (T_{j'} - T_{j}), \forall i \in \mathbf{I}^{\mathbf{R}}, j \in \mathbf{JUS}_{\mathbf{i}}^{\mathbf{OUT}}, j' \in \mathbf{JUS}_{\mathbf{i}}^{\mathbf{IN}}, s \in \mathbf{S}$$
(25)

$$A_i^r \cdot AMTD_i \cdot H_{i,s} = 10^6 \cdot Q_{i,s}, \forall i \in \mathbf{I}^{\mathbf{R}}, s \in \mathbf{S}$$
(26)

$$V_{i} = \frac{A_{i}^{r} \cdot (\delta_{i}^{dc})^{2}}{\pi \cdot \delta_{i}^{e}}, \forall i \in \mathbf{I}^{\mathbf{R}}$$

$$(27)$$

$$AMTD_{i} = \frac{\left[\left(T_{j^{\prime\prime}} + T_{j^{\prime\prime\prime}}\right) - \left(T_{j} + T_{j^{\prime}}\right)\right]}{2}, \forall i \in \mathbf{I}^{\mathbf{R}}, j \in \mathbf{JPS_{i}^{OUT}}, j^{\prime} \in \mathbf{JPS_{i}^{IN}}, j^{\prime\prime} \in \mathbf{JUS_{i}^{OUT}}, j^{\prime\prime\prime}$$

$$\in \mathbf{JUS_{i}^{IN}}$$

$$(28)$$

$$\frac{1}{H_{i,s}} = \frac{1}{HO_{i,s}} + \frac{\delta^e - \delta^{in}}{2\zeta^t} + \frac{\delta^e}{\delta^{in} \cdot HI_{i,s}}, \forall i \in \mathbf{I}^{\mathbf{R}}, s \in \mathbf{S}$$
⁽²⁹⁾

$$HO_{i,s} = \frac{0.66 \cdot \zeta_k^f}{\delta^e} \left(\frac{cp_k \cdot \mu_k}{\zeta_k^f} \right)^{0.3} \left[\left(\frac{U_{j',s} \cdot \rho_k \cdot \delta^e}{\mu_k} \right) \cdot \left(\frac{XB_{j,s} \cdot \rho_B + (1 - XB_{j,s}) \cdot \rho_A}{\rho_k} \right) \cdot \left(\frac{1 - \epsilon^r}{\epsilon^r} \right) \right]^{0.44} +$$

$$(30)$$

$$\frac{\sigma \cdot (TO_{i,s}^{*} - T_{j}^{*})}{\left(\frac{1}{\psi^{b}} + \frac{1}{\psi^{t}} - 1\right) \cdot (TO_{i,s} - T_{j})}, \forall i \in \mathbf{I}^{\mathbf{R}}, j \in \mathbf{JPS_{i}^{OUT}}, j' \in \mathbf{JS_{i}^{C}}, k \in \mathbf{K}, s \in \mathbf{S}$$

$$\frac{HI_{i,s} \cdot \delta^{in}}{\zeta_{k}^{f}} = 0.023 \cdot \left(\frac{Cp_{k} \cdot \mu_{k}}{\zeta_{k}^{f}}\right)^{0.4} \left(\frac{U_{j,s} \cdot \rho_{k} \cdot \delta^{in}}{\mu_{k}}\right)^{0.8}, \forall i = \mathbf{R1}, j \in \mathbf{JUS_{i}^{OUT}}, k \in \mathbf{K}, s \in \mathbf{S}$$
(31)

$$\frac{HI_{i,s} \cdot \delta^{in}}{\zeta_k^f} = 0.023 \cdot \left(\frac{Cp_k \cdot \mu_k}{\zeta_k^f}\right)^{0.3} \left(\frac{U_{j,s} \cdot \rho_k \cdot \delta^{in}}{\mu_k}\right)^{0.8}, \forall i = R2, j \in \mathbf{JUS_i^{OUT}}, k \in \mathbf{K}, s \in \mathbf{S}$$
(32)

$$TO_{i,s} = \frac{T_j + T_{j'}}{2} - \frac{10^6 \cdot Q_{i,s}}{A_i^r} \cdot \left(\frac{\delta^e}{\delta^{in} \cdot HI_{i,s}} + \frac{\delta^e - \delta^{in}}{2\zeta^t}\right), \forall i \in \mathbf{I}^{\mathbf{R}}, j \in \mathbf{JUS_i^{OUT}}, j' \in \mathbf{JUS_i^{IN}}, s$$

$$\in \mathbf{S}$$

$$(33)$$

$$10^3 \cdot V_{R1} = \frac{F_{9,A,s} \cdot SRT_{R1,s}}{\rho_A \cdot (1 - \epsilon^r)}, \forall s \in \mathbf{S}$$

$$(34)$$

$$10^3 \cdot V_{R2} = \frac{F_{15,B,s} \cdot SRT_{R2,s}}{\rho_B \cdot (1 - \epsilon^r)}, \forall s \in \mathbf{S}$$

$$(35)$$

$$U_{j,s} = \frac{F_{j,k,s}}{\rho_{k} \cdot A_{i}^{r} \cdot \left[\frac{\left(\delta^{dC}\right)^{2}}{\pi \delta^{e} \cdot L_{i}} - \frac{\delta^{e}}{4L_{i}}\right]}, \forall i \in \mathbf{I}^{\mathbf{R}}, j \in \mathbf{JS}_{\mathbf{i}}^{\mathbf{C}}, k \in \mathbf{K}, s \in \mathbf{S}$$

$$(36)$$

$$U_{j,s} = \frac{F_{j,k,s}}{\rho_k \cdot A_i^r \left[\frac{\left(\delta^{in} \right)^2}{4 \cdot \delta^e \cdot L_i} \right]}, \forall i \in \mathbf{I}^{\mathbf{R}}, j \in \mathbf{JUS}_{\mathbf{i}}^{\mathbf{IN}} \cup \mathbf{JUS}_{\mathbf{i}}^{\mathbf{OUT}}, k \in \mathbf{K}, s \in \mathbf{S}$$

$$(37)$$

$$TO_{i,s} \ge \frac{T_j + T_{j'}}{2}, \forall i \in \mathbb{R}, j \in JPS_i^{OUT}, j' \in JPS_i^{IN}, s \in S$$
(38)

$$TO_{i,s} \leq \frac{T_j + T_{j'}}{2}, \forall i \in \mathbb{R}2, j \in \mathbf{JPS_i^{OUT}}, j' \in \mathbf{JPS_i^{IN}}, s \in \mathbf{S}$$

$$(39)$$

$$\frac{10^{3} \cdot Q_{i,s} \cdot (T_{j'} - TP_{i})}{(T_{j'} - T_{j})} = \left(-F_{j,A,s} + F_{j',A,s}\right) \cdot \Delta H^{r} + \sum_{j'' \in \mathbf{JP}_{i}^{\mathsf{OUT}}} \sum_{k} F_{j'',k,s} \cdot Cp_{k} \cdot (T_{j''} - T^{eq}), \qquad (40)$$
$$\forall i = \mathrm{R1}, j \in \mathbf{JUS}_{i}^{\mathsf{OUT}}, j' \in \mathbf{JUS}_{i}^{\mathsf{IN}}, s \in \mathbf{S}$$

$$\frac{10^{3} \cdot Q_{i,s} \cdot (T_{j} - TP_{i})}{(T_{j'} - T_{j})} = \sum_{j'' \in \mathbf{JP}_{i}^{\mathbf{IN}}} \sum_{k} F_{j'',k,s} \cdot Cp_{k} \cdot (T_{j''} - T_{j'''}),$$

$$\forall i = \mathbf{R}2, j \in \mathbf{JUS}_{i}^{\mathbf{OUT}}, j' \in \mathbf{JUS}_{i}^{\mathbf{IN}}, j''' \in \mathbf{JPS}_{i}^{\mathbf{OUT}}, s \in \mathbf{S}$$

$$(41)$$

$$T_1 = T_3 + \delta^T \tag{42}$$

$$T_2 = T_4 + \delta^T \tag{43}$$

$$E^{p,day} = -0.25 \cdot \left(\frac{T_3}{1000}\right)^2 + 0.87 \cdot \left(\frac{T_3}{1000}\right) - 0.15$$
(44)

$$E^{p,night} = -0.25 \cdot \left(\frac{T_{17}}{1000}\right)^2 + 0.87 \cdot \left(\frac{T_{17}}{1000}\right) - 0.15$$
(45)

$$T_{j} = 0.87 \cdot T_{j'} - 98.3, \forall i = \{E2, R2\}, j \in \mathbf{JUS_{i}^{IN}}, j' \in \mathbf{JUS_{i}^{OUT}}$$
(46)

$$10^{3} \cdot Q_{i,s} = \sum_{k} F_{1,k,s} \cdot Cp_{k} \cdot (T_{1} - T_{2}), \forall i = E2, s \in \mathbf{S}$$
(47)

$$Q_{i,s} \cdot E^{p,day} \cdot \eta^{bop} = \theta^{rate} \tag{48}$$

$$DT_s^c \le \kappa_s^{day}, \forall s \in \mathbf{S}$$
(49)

$$NT_s^d \le \kappa_s^{night}, \forall s \in \mathbf{S}$$
 (50)

$$F_{12,k,s} \cdot DT_s^c = F_{15,k,s} \cdot NT_s^d, \forall k \in \mathbf{K}, s \in \mathbf{S}$$
(51)

$$F_{10,k,s} \cdot DT_s^c = F_{16,k,s} \cdot NT_s^d, \forall k \in \mathbf{K}, s \in \mathbf{S}$$
(52)

$$Q_{R2,s} \cdot E_s^{p,night} \cdot \eta^{bop} = \theta^{rate}, \forall s \in \mathbf{S}$$
(53)

$$Q_s^{HTF} = \theta^{rate} / E^{p,day} / \eta^{bop} + Q_{R1,s}, \forall s \in \mathbf{S}$$
(54)

$$QT^{rec} \cdot E_s^{rec} \cdot \kappa_s^{day} \ge Q_s^{HTF} \cdot DT_s^c, \forall s \in \mathbf{S}$$
(55)

$$A^{col} \cdot v_s \cdot \eta^{col} \cdot E_s^{rec} \cdot \kappa_s^{day} = Q_s^{HTF} \cdot DT_s^c + QT_s^{curtail}, \forall s \in \mathbf{S}$$
(56)

$$P_{s}^{conv} = \theta^{conv} \cdot \sum_{k} F_{2,k,s}, \forall s \in \mathbf{S}$$
(57)

$$P_{s}^{conv} = \theta^{conv} \cdot \sum_{k} F_{2,k,s}, \forall s \in \mathbf{S}$$

$$(57)$$

(59)

(60)

(61)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

$$P_{s}^{conv} = \theta^{conv} \cdot \sum_{k} F_{2,k,s}, \forall s \in \mathbf{S}$$

$$(57)$$

$$P_{s}^{conv} = \theta \ ^{conv} \cdot \sum_{k} F_{2,k,s} , \forall s \in \mathbf{S}$$

$$(57)$$

$$P_{s}^{conv} = \theta \ ^{conv} \cdot \sum_{k} F_{2,k,s} , \forall s \in \mathbf{S}$$

$$(57)$$

$$P_{s}^{conv} = \theta^{conv} \cdot \sum_{k} F_{2,k,s}, \forall s \in \mathbf{S}$$

$$C^{conv} \ge \lambda^{conv} \cdot P_{s}^{conv}, \quad \forall s \in \mathbf{S}$$
(57)
(57)

$$P_{s}^{conv} = \theta^{conv} \cdot \sum_{k} F_{2,k,s}, \forall s \in \mathbf{S}$$
(5)

$$\int_{S}^{conv} = \theta \, conv \cdot \sum_{k} F_{2,k,s} \, , \, \forall s \in \mathbf{S}$$

$$P_{s}^{conv} = \theta^{conv} \cdot \sum_{k} F_{2,k,s}, \forall s \in \mathbf{S}$$
(5)

$$\lambda^{conv} \cdot P_{s}^{conv}, \quad \forall s \in \mathbf{S}$$

$$P_{s}^{conv} = \theta^{conv} \cdot \sum_{k} F_{2,k,s}, \forall s \in \mathbf{S}$$

$$\gamma \geq \lambda^{conv} \cdot P_s^{conv}, \quad \forall s \in \mathbf{S}$$

$$\sum_{k} \sum_{k} \sum_{k} \sum_{k} \sum_{j=1, k, j \in \mathbb{N}} \lambda^{conv} \cdot P_{s}^{conv}, \quad \forall s \in \mathbb{S}$$

$$P_{s}^{conv} = \theta^{conv} \cdot \sum_{k} F_{2,k,s}, \forall s \in \mathbf{S}$$

$$(5)$$

$$V_{STK2} \ge \frac{DT_s^c}{(1 - \epsilon^{stk})} \cdot \sum_k^{\kappa} \frac{F_{2,k,s}}{\rho_k}, \forall s \in \mathbf{S}$$

 $V_{STK1} \ge \frac{DT_s^c}{(1 - \epsilon^{stk})} \cdot \sum_{i} \frac{F_{1,k,s}}{\rho_k}, \forall s \in \mathbf{S}$

 $P_s^{comp} = 2 \cdot F_{11,k,s} \cdot \phi^{comp}, \forall k = C, s \in \mathbf{S}$

 $M^{sm} \ge \sum_{k} F_{2,k,s} \cdot (SRT_{R1,s} + DT_{s}^{c}) + F_{11,k,s} \cdot SRT_{R2,s}$

 $\cdot (1 + \lambda^{cont})$ $OPEX = \lambda^{om, fix} \cdot \theta^{rate} + \lambda^{om, vary} \cdot W^{ele}$

 $W_s^{day} = (\theta^{rate} - P_s^{conv}) \cdot DT_s^c, \forall s \in \mathbf{S}$

 $W^{ele} = 365 \cdot \sum_{s} \pi_s \cdot (W_s^{day} + W_s^{night})$

 $LCOE = (CAPEX \cdot CRF + OPEX)/W^{ele}$

 $W_s^{night} = \theta^{rate} \cdot NT_s^d, \forall s \in \mathbf{S}$

 $C^{sen} \geq \lambda^{sen} \cdot QS_s, \forall s \in \mathbf{S}$

 $C^{E1} \ge \lambda^{E1} \cdot A^{E1}$

 $C^{sen} + C^{comp} + C^{E1}$

 $C^{comp} \geq \lambda^{comp} \cdot P_s^{comp}, \forall s \in \mathbf{S}$

$$V_{GTK} \ge \frac{F_{11,C,S} \cdot DT_S^C}{\rho_C}$$
$$T_{CC} = T_{CC} T_{CC} = T_{CC}$$

 $C^{TCES} = \lambda^{reactor} \cdot \sum_{i \in \mathbf{I}^{\mathbf{R}}} A_i^r + \lambda^{stk} \cdot (V_{STK1} + V_{STK2}) + \lambda^{stk} \cdot V_{GTK} + C^{conv} + \lambda^{sm} \cdot M^{sm} +$

 $CAPEX = [\lambda^{col} \cdot A^{col} + \lambda^{rec} \cdot \theta^{rec, ref} \cdot \left(\frac{QT^{rec}}{\theta^{rec, ref}}\right)^{\beta^{rec}} + C^{TCES} + \frac{\lambda^{p} \cdot \theta^{rate}}{\eta^{bop}}] \cdot (1 + \lambda^{indirect})$

Eq. (1) sets the flow of the reaction components in the utility streams to 0. Eq. (2) states that the component flow rates of stream 7 are equal to the sum of streams 1 and 5. Eq. (3) sets the temperature of streams 1 and 5 to be the same. Eq. (4) indicates that the temperature of the stream exiting the receiver should be at least 100 K higher than the temperature of the inlet stream. Eq. (5) is the component mass balance on the streams entering the receiver. Eq. (6-9) specify the difference between pinch and stream temperatures for the heat transfer to occur in the reactors. Eq. (10) states

20

$$\rho_{\rm C} = T_{\rm C} T_{\rm C} = T_{\rm C}$$
(62)

$$T_{10} = T_{16}, T_{12} = T_{15}$$
(62)

$$T_{10} = T_{16}, T_{12} = T_{15} \tag{62}$$

$$I_{10} = I_{16}, I_{12} = I_{15}$$

$$OS_s = F_{11,k,s} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$I_{10} = I_{16}, I_{12} = I_{15}$$

$$QS_s = F_{11,k,s} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$I_{10} = I_{16}, I_{12} = I_{15}$$

$$OS_c = F_{11,k,c} \cdot DT_c^c \cdot (\phi^c + Cp_k \cdot (T_{12} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$I_{10} = I_{16}, I_{12} = I_{15}$$

$$OS_s = F_{11,k,s} \cdot DT_s^C \cdot (\phi^C + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$I_{10} = I_{16}, I_{12} = I_{15}$$

$$OS_s = F_{11,k,s} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$I_{10} = I_{16}, I_{12} = I_{15}$$

$$OS_s = F_{11,k,s} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$I_{10} = I_{16}, I_{12} = I_{15}$$

$$OS_s = F_{11,k,s} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$I_{10} = I_{16}, I_{12} = I_{15}$$

$$OS_s = F_{11,k,s} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$I_{10} = I_{16}, I_{12} = I_{15}$$

$$OS_s = F_{11,k,s} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$T_{10} = T_{16}, T_{12} = T_{15}$$

$$OS_s = F_{11,k,s} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$T_{10} = T_{16}, T_{12} = T_{15}$$

$$OS_c = F_{11,k,c} \cdot DT_c^c \cdot (\phi^c + Cp_k \cdot (T_{12} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(63)

$$T_{10} = T_{16}, T_{12} = T_{15}$$

$$OS_s = F_{11ks} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$T_{10} = T_{16}, T_{12} = T_{15}$$

$$QS_s = F_{11ks} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$I_{10} = I_{16}, I_{12} = I_{15}$$

$$QS_s = F_{11,k.s} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(63)

$$I_{10} = I_{16}, I_{12} = I_{15}$$

$$OS_s = F_{11,k,s} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$I_{10} = I_{16}, I_{12} = I_{15}$$

$$OS_s = F_{11,k,s} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$T_{10} = T_{16}, T_{12} = T_{15}$$

$$OS_c = F_{11,k,c} \cdot DT_c^c \cdot (\phi^c + Cp_k \cdot (T_{12} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$T_{10} = T_{16}, T_{12} = T_{15}$$

$$QS_s = F_{11,k,s} \cdot DT_s^c \cdot (\phi^c + Cp_k \cdot (T_{13} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(62)

$$T_{10} = T_{16}, T_{12} = T_{15}$$

$$OS = F_{cons} + DT^{c} \cdot (\phi^{c} + Cn_{c} + (T_{con} - T^{eq})) \forall k = C \ s \in S$$
(62)
(63)

$$T_{10} = T_{16}, T_{12} = T_{15}$$

$$OS_c = F_{11,k,c} \cdot DT_c^c \cdot (\phi^c + Cp_k \cdot (T_{12} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(63)

$$T_{10} = T_{16}, T_{12} = T_{15}$$

$$OS_{e} = F_{14} k_{e} \cdot DT_{e}^{c} \cdot (\phi^{c} + C p_{b} \cdot (T_{12} - T^{eq})) \forall k = C, s \in \mathbf{S}$$
(62)
(63)

$$T_{10} = T_{16}, T_{12} = T_{15}$$

$$OS_c = F_{11,k,c} \cdot DT_c^c \cdot (\phi^c + Cp_k \cdot (T_{12} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(63)

$$T_{10} = T_{16}, T_{12} = T_{15}$$

$$OS_c = F_{11,k,c} \cdot DT_c^c \cdot (\phi^c + Cp_k \cdot (T_{12} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(63)

$$T_{10} = T_{16}, T_{12} = T_{15}$$

$$OS_c = F_{11} k_c \cdot DT_c^c \cdot (\phi^c + Cp_k \cdot (T_{12} - T^{eq})), \forall k = C, s \in \mathbf{S}$$
(62)
(63)

that the enthalpy of mixing is 0. Eq. (11) relates the receiver efficiency with the temperature. Eq. (12) states that the mass of utility entering the unit E1 and reactor units equals the mass exiting. Eqs. (13) and (14) determine the heat duty of the receiver and E1, respectively. Eqs. (15) and (16) set the temperature difference between the streams entering and exiting E1 for heat transfer to occur. Eq. (17) and (18) define the heat duty and average mean temperature difference (AMTD), respectively. Eq. (19) relates the heat exchange area, heat transfer coefficient, and AMTD with the heat duty of E1.

Eqs. (20-23) models the mass balance of the reaction components and utilities in the reactors. Eqs. (24) and (25) compute the heat exchanged in the reactors. Eq. (26) relates the heat exchange area in the reactors, heat transfer coefficient, and AMTD with the heat exchanged. Eq. (27) relates the reactor volume with the heat exchange area of the reactors. Eq. (28) defines the AMTD of the streams associated with the reactors. The overall heat transfer coefficient between solids and HTF/WF is estimated using Eqs. (29-33). Eqs. (34) and (35) relate the reactor volume with the respective flow rate of C and HT/WF in the reactors with the respective flow rates. Eqs. (38) and (39) specify the relationship between the average temperature of the tube surface and the inlet and outlet process stream temperatures. Eqs. (40) and (41) relate the pinch temperature with the heat exchanged in the reactors.

Eqs. (42) and (43) set the minimum temperature difference between the stream for heat transfer. Eqs. (44) and (45) relate the efficiency of the power block to temperature. Eq. (46) specifies the relationship between the inlet and outlet WF temperature of E2 and R2. Eq. (47) estimates the heat exchanged in E2 and the corresponding power produced in given by eq. (48). Eqs. (49) and (50) relate the charging and discharging duration with sun and night hours, respectively. Eqs (51) and (52) are the mass balance equations on TK1 and TK2.

Eq. (53) relates the heat exchanged in R2 with the power produced. Eq. (54) states that the heat transferred to HTF during charging is the sum of heat transferred to R1 and E2. Eq. (55) estimates the receiver size based on the heat exchanged. Eq. (56) states that the energy the collector receives is equal to the sum of heat exchanged in the receiver and curtailed. Eq. (57) estimates the power needed by the conveyor to transport solids and eq. (58) computes the capital cost of the conveyor. Eqs. (59-61) relate the volume of storage tanks with the discharging time, flow rates, density, and void fraction. Eq. (62) states that the temperature of the solids entering the storage tanks equals that of the solids exiting. Eq. (63) estimates the sensible heat stored by gas C. Eq. (64) estimates the power consumed by the compressor. Eq. (65), (66), and (67) compute the capital costs of sensible heat storage unit, compressor, and heat exchanger E1, respectively.

Eq. (68) estimates the total material required. Eq. (69) states that the total cost of thermochemical energy storage is the sum of reactor, storage tanks, conveyor, material, sensible heat storage, compressor, and heat exchanger costs. Eqs. (70) and (71) estimate the total capital expenditure and operating costs. Eq. (72) and (73) compute the total electricity produced during day and night, respectively. Eq. (74) estimates the total electricity produced in a year. Eq. (75) relates LCOE with the annual costs and the total electricity produced.

Parameter	Values	Parameter	Values
δ^{e}	0.034	λ^{cont}	0.07
δ^{in}	0.049	θ^{rate}	100
δ^{dc}	0.118	$\theta^{rec,ref}$	670
$\lambda^{indirect}$	0.26	δ^T	10
κ_{s}^{day}	s1: 3.9, s2: 5.2, s3: 6.8, s4:	ϵ^r	0.7
5	7.8, s5: 9.6, s6: 11.1		
ϵ^{stk}	0.5	ϕ^{comp}	0.36
ζ^t	18.6	β^{rec}	0.7
ζ_k^f	s-CO ₂ : 0.075, CO ₂ : 0.092	η^{col}	0.6
μ_k	s-CO ₂ : 4.3×10^{-5} , CO ₂ :	η^{bop}	0.9
	4×10^{-5}		
σ	5.7×10^{-8}	λ^{col}	150
ξ	10	λ^{conv}	106
ξ^{HTC}	50	λ^{E1}	10 ³
ψ^t	0.9	λ^{comp}	106
ψ^b	0.9	λ^{sens}	3×10^{4}
ϕ^{col}	1200	λ^{rec}	1.75×10^{5}
α^{rec}	0.95	λ^p	1.2×10^{6}
ψ^{rec}	0.85	$\lambda^{reactor}$	500
λ^{CRF}	0.1	λ^{stk}	1800
v_s	s1: 0.27, s2: 0.6, s3: 0.74,	π_s	s1: 0.04, s2: 0.08, s3: 0.11,
	s4: 0.89, s5: 0.94, s6: 0.97		s4: 0.24, s5: 0.3, s6: 0.22
θ^{conv}	0.0504	$\lambda^{om,fix}$	$6.5 imes 10^4$
λ^{gtk}	100	λ ^{om,vary}	3.5

Table S3. Parameter values [2–5].

S5 Solution strategy

The process model is nonlinear consisting of non-convex terms and the existing solvers (e.g., BARON [6], ANTIGONE [7], etc.) could not solve it to global optimality. Accordingly, we develop a solution strategy, which is based on the observation that by fixing the temperature of streams 1 (T_1) and 16 (T_{16}) in Figure S3, the model could be solved quickly to global optimality using BARON. The lower and upper bounds of T_1 , denoted as T_1^L and T_1^U , respectively, are determined using:

 $T_1^L = T^{eq} + 10, T_1^U = \min\{1750, T_A^m, T_B^m\}$

The lower and upper bounds of T_{16} are determined using:

$$T_{16}^{L} = T^{eq} - 500, T_{16}^{U} = T^{eq} - 10$$

Thus, we discretize the range of the two variables to generate grid points (Figure S4A) and solve the model at all the grid points (Figure S4B). The solution of the model corresponds to the grid point for which the minimum LCOE is attained.

Figure S4. (A) Illustration of the grid points generated by discretizing the range of T_1 and T_{16} . (B) Solution strategy developed to solve the model to global optimality.

S6 Derivation of empirical relationships for material property targeting

The properties that are of interest are: reaction enthalpy and entropy, equilibrium temperature, density, heat capacity, and molar weight of the materials involved in the reaction. We begin with stating the Neumann-Kopp rule [8]:

$$Cp_A^m = Cp_B^m + \left(\frac{x-y}{2}\right) \cdot Cp_{O_2}^m \tag{76}$$

where Cp_A^m , Cp_B^m , and $Cp_{O_2}^m$ are the molar heat capacities of A, B, and O₂, respectively. The entropy of component k, denoted by S_{k} , is given by:

$$S_k = S_k^{\circ} + \int_{298}^{T} \frac{Cp_k^m}{T} dT, k \in \{A, B\}$$
(77)

where S_k° is the entropy of component k at standard conditions. Using Eqs. (75) and (76), the reaction entropy (ΔS^r) is:

$$\Delta S^r = S^\circ_B - S^\circ_A + \left(\frac{x - y}{2}\right) \cdot S^\circ_{O_2} \tag{78}$$

(**–** 0)

Using similar arguments, the reaction enthalpy (ΔH^r) is given by:

$$\Delta H^r = H_B^\circ - H_A^\circ + \left(\frac{x - y}{2}\right) \cdot H_{O_2}^\circ$$
⁽⁷⁹⁾

where H_B° , H_A° , and $H_{O_2}^{\circ}$ are the formation enthalpies of B, A, and O₂, respectively at standard conditions. Glasser and Jenkins [9,10] related molecular volumes (MV_k) with heat capacity, standard entropy, and density as follows:

$$Cp_k = \kappa_{Cp} \cdot MV_k + \gamma_{Cp}, \forall k \in \{A, B\}$$
(80)

(00)

$$S_k^{\circ} = \kappa_S \cdot MV_k + \gamma_S, \forall k \in \{A, B\}$$
(81)

$$\rho_k = \frac{\omega_k}{602.2 \cdot MV_k}, \forall k \in \{A, B\}$$
(82)

By relating a single variable (molecular volume) with heat capacity, standard entropy, and density, the correlations between the properties are established. The bounds on the property values are imposed and they correspond to the minimum and maximum values of the properties of existing materials. Equations for molar weight balance and the stoichiometry coefficient for gas C are as follows:

$$\omega_A = \omega_B + \nu_C \cdot \omega_C \tag{83}$$

$$\nu_c = \frac{x - y}{2} \tag{84}$$

The optimal material properties, design, and operating conditions are obtained by solving the optimization model formed by including Eqs. 1-75 and Eqs. 78-84.

S7 Optimization results for Fe₂O₃/Fe₃O₄ system

The solution of the optimization model yields the design and operational decisions that lead to minimum LCOE. In this section, we present the results for the Fe_2O_3/Fe_3O_4 system. The optimal design decisions are given in Table S4. The values of operating variables are given in Table S5-S6. The detailed energy flows are shown in Figure S5.

Heliostat	Receiver	R1 Volume	R2 Volume	R1 Heat Exchange	R2 Heat Exchange	Tank TK1	Tank TK2	Sensible storage for C
1.33 km ²	752 MW	316 m ³	424 m ³	3539 m ²	4759 m ²	4952 m ³	4903 m ³	127 MWh
100 1111	, 02 1111	010		0007 111	1.07.11			

Table S4. Optimal design decisions for Fe_2O_3/Fe_3O_4 system.

Table S5. Stream temperatures (K) for Fe_2O_3/Fe_3O_4 system based on flowsheet in Figure S3.

Day			Night	
$T_{1} = T_{5}$	1675	<i>T</i> ₁₃		298
T_2	1360	T_{14}		1342
T_3	1665	T_{16}		1233
T_4	1350	T_{17}		1332
T_6	1605	T_{18}		1060
T_7	1553			
$T_8 = T_{11} = T_{12} = T_{15}$	1623			
$\underline{T_9 = T_{10}}$	1245			

Storage charging (h)				Storage discharging (h)							
1	1 2 3 4 5 6					1	2	3	4	5	6
3.9	5.3	6.8	7.8	9.6	11.1	0	1.0	5.3	10.4	14.4	12.9

Table S6. Storage charging and discharging hours in the six scenarios for Fe_2O_3/Fe_3O_4 system.

Figure S5. Energy flows and energy efficiencies of CSP-TCES system employing Fe_2O_3/Fe_3O_4 system. Daily energy flows are scenario-weighted averages. The storage efficiency is assumed to be 100%. The percentages of chemical and sensible energy storage are shown in the storage block.

S8 Heat transfer process

Figure S6. Illustration of heat transfer process during (A) day and (B) night operation.

For the overall system efficiency to be high, it is critical that T^{rec} should be low, T^{pc} should be high, and the difference between T^{rec} and T^{pc} should be small. The temperature-enthalpy diagram shown in Figure S6 illustrates the heat transfer process and highlights that $T^{rec} > T^{pc}$ so that the second law of thermodynamics is satisfied. Secondly, a finite difference in T^{rec} and T^{pc} will always exist due to heat transfer limitations.

References

- [1] Pardo P, Deydier A, Anxionnaz-Minvielle Z, Rougé S, Cabassud M, Cognet P. A review on high temperature thermochemical heat energy storage. Renewable and Sustainable Energy Reviews 2014;32:591–610. https://doi.org/10.1016/j.rser.2013.12.014.
- [2] Turchi CS, Heath GA. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM). 2013.
- [3] Gael D. Ulrich and Palligamai T. Vasudevan. Chemical Engineering Process Design and Economics: A Practical Guide. Process Publ.; 2004.
- [4] Peng X, Yao M, Root TW, Maravelias CT. Design and Analysis of Concentrating Solar Power Plants with Fixed-bed Reactors for Thermochemical Energy Storage. Appl Energy 2020;262:114543. https://doi.org/10.1016/j.apenergy.2020.114543.
- [5] Bayon A, Bader R, Jafarian M, Fedunik-Hofman L, Sun Y, Hinkley J, et al. Techno-economic assessment of solid-gas thermochemical energy storage systems for solar thermal power applications. Energy 2018;149:473–84. https://doi.org/10.1016/j.energy.2017.11.084.
- [6] Khajavirad A, Sahinidis N v. A hybrid LP/NLP paradigm for global optimization relaxations. Mathematical Programming Computation 2018;10:383–421.
- [7] Misener R, Floudas C A. ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations. Journal of Global Optimization 2014;59:503–26.
- [8] Kopp H. Investigations of the specific heat of solid bodies. Philos Trans R Soc Lond 1865;155:71–292.
- [9] Glasser L, Donald H, Jenkins B. Predictive thermodynamics for ionic solids and liquids. Physical Chemistry Chemical Physics 2016;18:21226. https://doi.org/10.1039/c6cp00235h.
- [10] Glasser L, Jenkins HDB. Volume-based thermodynamics: A prescription for its application and usage in approximation and prediction of thermodynamic data. J Chem Eng Data 2011;56:874–80.

https://doi.org/10.1021/JE100683U.