1	Supporting Information:
2	Elucidating Multiple Reaction Pathways for the Degradation of Antibiotics in Water by
3	Self-Active Single-Atom Zinc Catalyst on Biochar
4	Jieming Yuan ¹ , Yunkyoung Han ¹ , Krishnamoorthy Sathiyan ² , Virender K. Sharma ^{2,*} Abdol
5	Hadi Mokarizadeh ³ , Mesfin Tsige ³ , Jiechao Jiang ⁴ , Xingmao Ma ^{1,*}
6	¹ Department of Civil and Environmental Engineering, Texas A&M University,
7	College Station, TX, 77843
8	² Program for Environment and Sustainability, Department of Environmental and
9	Occupational Health, Texas A&M University, College Station, TX, 77843
10	³ Department of Polymer Science and Polymer Engineering, University of Akron,
11	Akron, OH, 44325
12	⁴ Department of Materials Science & Engineering, University of Texas at Arlington,
13	Arlington, TX, 76019
14	
15	
16	
17	Corresponding author:
18	Dr. Xingmao Ma
19	Email: <u>xma@civil.tamu.edu</u>
20	Dr. Virender K. Sharma
21	Email: <u>vsharma@tamu.edu</u>
22	

23	Table of Contents
24	Section A. Materials
25	Chemicals and Materials
26	Degradation products of TMP4
27	Superoxide radical detection
28	Hydrogen peroxide detection
29	Section B. Supporting Figures
30	Section C. Supporting Tables
31	
32	Supplementary Texts: 4
33	Supplementary Figures: 12
34	Supplementary Tables: 4
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47 Section A. Materials

48 Chemicals and Materials

Post oak pellet was obtained from B&B Charcoal (Weimar, USA). Trimethoprim (TMP, 49 \geq 98.0%) and sulfamethoxazole (SMX, \geq 98.0%) were purchased from TCI America (Portland, 50 USA). 5,5-dimethyl-1-pyrroline N-oxide (DMPO, \geq 98.0%), hydrogen peroxide (H₂O₂, 30%) 51 and hydrochloric acid (HCl, 33-38%) were obtained from Fisher Chemical (Waltham, USA). 52 2,2,6,6-tetramethyl-4-piperidinol (TEMPO, 99%) and ammonium metavanadate (NH₄VO₃, 53 99.5%) were purchased from ACROS Organics (Waltham, USA). L-histidine (L-his, \geq 98.0%), 54 nitro blue tetrazolium (NBT, \geq 98.0%) and dicyandiamide (98.0%) were purchased from Alfa 55 Aesar (Haverhill, USA). The following chemicals were purchased from different suppliers: 56 methanol (MeOH, reagent grade) from VWR Chemicals (Radnor, USA), acetonitrile (CH₃CN, 57 \geq 99.7%) from BTC (Hudson, USA), superoxide dismutase (SOD, 6010 U/mg) from Millipore 58 Sigma (Burlington, USA), and zinc nitrate (Zn (NO₃)₂, \geq 98.5%) from Spectrum Chemical 59 (New Brunswick, USA). All chemicals were used as received. Industrial-grade nitrogen used 60 in the experiment was purchased from Airgas (Radnor, USA). All solutions were prepared 61 using ultrapure water produced by a NANOpure II filter from Thermo Fisher Scientific 62 (Waltham, USA) 63

64

65

- 67
- 68

69 Degradation products of TMP

Samples collected at 0, 0.5, and 2.0 hours were used to identify TMP degradation products. 70 Solid-phase extraction (SPE) was used to concentrate TMP and its metabolites in the samples. 71 Waters Oasis HLB cartridges (WAT106202, 6 cc/200 mg) were pre-conditioned with 5.0 mL 72 methanol and 5.0 mL ultrapure water in the SPE analysis before they were loaded with 1.0 mL 73 samples. The cartridges were vacuum-dried for 10 minutes after loading, and the samples were 74 eluted with 1.0 mL of methanol and stored in 2 mL microtubes. Untargeted analysis was 75 performed with a liquid chromatography high-resolution accurate mass spectrometry (LC-76 HRAM) fitted with a Q Exactive Plus Orbitrap mass spectrometer (Thermo Fisher Scientific, 77 Waltham, USA) and connected to a binary pump UltiMate 3000 HPLC (Sunnyvale, USA). 78 79

80 Superoxide radical detection

The presence of superoxide radical (O_2^{-}) was determined by the reaction between O_2^{-} and nitroblue tetrazolium chloride (NBT) (Goto et al. 2004). Briefly, 0.5 mg SAZn@BC was added into 10 µM NBT solution (10 mL) and stirred at 400 rpm for one hour. 2 mL samples were taken at 0, 30, and 60 mins and filtered through a 0.45 µm syringe filter. NBT in the filtrate was analyzed by a UV-vis-NIR spectrophotometer (Hitachi U-4100) at 260 nm.

87 Hydrogen peroxide detection

88 The generation of hydrogen peroxide (H_2O_2) was confirmed by the reaction between H_2O_2

89	and metavanadate to produce peroxovanadate (Nogueira et al. 2005). 0.5 mg SAZn@BC was
90	added into 0.2 mM ammonia metavanadate solution (10 mL) and stirred at 400 rpm for 20
91	minutes with pH adjusted to 3.0, 5.0, and 6.0, respectively. The mixture of 0.2 mM H_2O_2 and
92	0.2 mM ammonia metavanadate was stirred at 400 rpm for 20 minutes as a control. The
93	produced peroxovanadate was detected with a UV-vis-NIR spectrophotometer (Hitachi U-
94	4100) at 450 nm.
95	
96	
97	
98	
99	
100	
101	
102	
103	
104	
105	
106	
107	
108	
109	
110	

111 Section B. Supporting Figures

113 **Figure S1.** TMP removal by SAZn@BC with different Zn wt%. Reaction conditions: [TMP₀]=

123 Figure S2. Single catalyst model of SAZn@BC for DFT calculation.

148 Figure S4. MS1 and MS2 spectra of possible TMP degradation metabolites.

m/z

140

m/z

Figure S5. The effect of Do level on the performance of TMP removal by SAZn@BC Reaction conditions: $[TMP_0] = 10 \ \mu\text{M}$, $[Biochar] = 0.2 \ g/L$, [pH] = 4.5, $T = 25^{\circ}\text{C}$.

161 Figure S6. Detection of superoxide radical in SAZn@BC system. Reaction condition:

162 [Biochar] = 0.5 g/L, [NBT]₀=10 μ M.

$$O_2 + SAZn@BC^*e^- \rightarrow O_2^{--}$$
 (R1)

$$O_2^{-} + H^+ \rightarrow OOH \qquad k_1 = 7.2 \times 10^{10} \,M^{-1} \cdot s^{-1} \quad (R2)$$

$$O_2 + H^+ + SAZn@BC^*e^- \rightarrow OOH$$
 (R3)

$$^{\circ}OOH + H^{+} + SAZn@BC*e^{-} \rightarrow H_2O_2$$
 (R4)

Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
Figure S7. Proposed reactive species generation by the SAZn@BC.
Figure S7. Proposed reactive species generation by the SAZn@BC.
Figure S7. Proposed reactive species generation by the SAZn@BC.
Figure S7. Proposed reactive species generation sp

- 186
- 187
- -07
- 188

190 Figure S8. Detection of H_2O_2 in SAZn@BC system. Reaction condition: [Biochar] = 0.5 g/L,

 $[NH_4VO_3]_0 = 0.2 \text{ mM}$. H_2O_2 reference has a concentration of 0.2 mM.

Figure S9. Binding free energy between SAC, O2, OOH and H2O2 (H2Q for hydroquinone 202

S14

Figure S10. (a) Trimethoprim (TMP) removal by SAZn@BC in the presence of different inorganic anions in the solution. Reaction conditions: Running time = 10 hours, $[TMP_0] = 10$ μ M, [Biochar] = 0.2 g/L, [CO₃²⁻]=50 mM, [PO₄³⁻] =50 mM, [Cl⁻]=50 mM, [Br⁻]= 50mM. 218 pH=6.0, T = 25.0°C.

Figure S11. (a) Trimethoprim (TMP) degradation by SAZn@BC regenerated at different
reheating temperatures after first cycle of reaction. (b) TMP degradation by SAZn@BC
regenerated at different reheating temperatures after second cycle of reaction.

Figure S12. XPS spectra of SAZn@BC before and after the reaction. (a) The O 1s spectrum, and (b) The C 1s spectrum. The spectra of SAZn@BC before the reaction are at the top and after the reaction are at the bottom in each panel.

267 Section C. Supporting Tables

Table S1. Free energy of intermediates at potential relative to free catalyst and oxygen for

269

C A Z	D C	a a unta inina	7	~:+~~
SALD	<i>w</i> ,BC	containing	Ζn	sites.

Reaction	R1	R3	R4
Free energy (eV) at $U = 0 V$	-1.70	-1.91	-1.40
Free energy (eV) at $U = 0.22 V$	-1.70	-1.69	-0.96

Table S2. Free energy of intermediates at potential relative to free catalyst and oxygen for

2	7	3
2	7	3

SAZn@BC without Zn sites.

Reaction	R1	R3
Free energy (eV) at $U = 0 V$	0.48	-0.85
Free energy (eV) at $U = 0.22 V$	0.48	-0.62

 Table S3. Partial charge from Natural Population Analysis values for catalyst

Combination	SAC/O ₂	SAC/·OOH	SAC/TMP
Partial charge	0.76	0.76	-0.10

2	01	
2	82	

catalyst systems

Catalyst	Dosage (g L ⁻¹)	System	Initial TMP concentrat ion (µM)	Secon rate constant (L/g.min)	Reference
SAZn@BC	0.2	Catalyst only	10	8.07x10 ⁻²	This work
N-dopped Biochar	1	Persulfate activation	45	8.7x10 ⁻³	(Annamalai and Shin 2022)
Malt rootlet biochar	0.045	persulfate activation	3.7	6.88x10 ⁻²	(Grilla et al. 2020)
Co ₃ O ₄ /BiOI	0.8	Photocatalysis	0.07	1.57x10 ⁻²	(Malefane et al. 2020)
Co-doped organic aerogels	0.01	Photocatalysis	10	1.31	(Bolobajev et al. 2019)
Ni-doped organic aerogels	0.01	Photocatalysis	10	1.48	(Bolobajev et al. 2019)
Zn-doped organic aerogels	0.01	Photocatalysis	10	1.24	(Bolobajev et al. 2019)
Fe-doped organic aerogels	0.01	Photocatalysis	10	1.21	(Bolobajev et al. 2019)
TiO ₂ -P25	1	Photocatalysis	1	2.4 x10 ⁻³	(Oros-Ruiz et al. 2013)
Au/TiO ₂ -P25	1	Photocatalysis	1	5.2x10 ⁻³	(Oros-Ruiz et al. 2013)
Ag/TiO ₂ -P25	1	Photocatalysis	1	5.2x10 ⁻³	(Oros-Ruiz et al. 2013)

Cu/TiO ₂ -P25	1	Photocatalysis	1	4.5x10-3	(Oros-Ruiz et
					al. 2013)
	1			2 0 10 2	
N_1/T_1O_2-P25	1	Photocatalysis	1	3.0x10-3	(Oros-Ruiz et
					al. 2013)

284 References

- 285 Annamalai S, Shin WS (2022) Efficient degradation of trimethoprim with ball-milled nitrogen-doped biochar
- 286 catalyst via persulfate activation. Chemical Engineering Journal 440:135815
- 287 Bolobajev J, Kask M, Kreek K, et al (2019) Metal-doped organic aerogels for photocatalytic degradation of
- 288 trimethoprim. Chemical Engineering Journal 357:120–128.
- 289 https://doi.org/https://doi.org/10.1016/j.cej.2018.09.127
- 290 Grilla E, Vakros J, Konstantinou I, et al (2020) Activation of persulfate by biochar from spent malt rootlets for
- 291 the degradation of trimethoprim in the presence of inorganic ions. Journal of Chemical Technology &
- 292 Biotechnology 95:2348–2358
- 293 Malefane ME, Feleni U, Mafa PJ, Kuvarega AT (2020) Fabrication of direct Z-scheme Co3O4/BiOI for
- 294 ibuprofen and trimethoprim degradation under visible light irradiation. Appl Surf Sci 514:145940
- 295 Oros-Ruiz S, Zanella R, Prado B (2013) Photocatalytic degradation of trimethoprim by metallic nanoparticles
- supported on TiO2-P25. J Hazard Mater 263:28-35.
- 297 https://doi.org/https://doi.org/10.1016/j.jhazmat.2013.04.010
- 298
- 299
- 300