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47 Section A. Materials 

48 Chemicals and Materials

49 Post oak pellet was obtained from B&B Charcoal (Weimar, USA). Trimethoprim (TMP, 

50 ≥ 98.0%) and sulfamethoxazole (SMX, ≥ 98.0%) were purchased from TCI America (Portland, 

51 USA). 5,5-dimethyl-1-pyrroline N-oxide (DMPO, ≥ 98.0%), hydrogen peroxide (H2O2, 30%) 

52 and hydrochloric acid (HCl, 33-38%) were obtained from Fisher Chemical (Waltham, USA). 

53 2,2,6,6-tetramethyl-4-piperidinol (TEMPO, 99%) and ammonium metavanadate (NH4VO3, 

54 99.5%) were purchased from ACROS Organics (Waltham, USA). L-histidine (L-his, ≥ 98.0%), 

55 nitro blue tetrazolium (NBT, ≥ 98.0%) and dicyandiamide (98.0%) were purchased from Alfa 

56 Aesar (Haverhill, USA). The following chemicals were purchased from different suppliers: 

57 methanol (MeOH, reagent grade) from VWR Chemicals (Radnor, USA), acetonitrile (CH3CN, 

58 ≥ 99.7%) from BTC (Hudson, USA), superoxide dismutase (SOD, 6010 U/mg) from Millipore 

59 Sigma (Burlington, USA), and zinc nitrate (Zn (NO3)2, ≥ 98.5%) from Spectrum Chemical 

60 (New Brunswick, USA). All chemicals were used as received. Industrial-grade nitrogen used 

61 in the experiment was purchased from Airgas (Radnor, USA). All solutions were prepared 

62 using ultrapure water produced by a NANOpure II filter from Thermo Fisher Scientific 

63 (Waltham, USA)
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69 Degradation products of TMP 

70 Samples collected at 0, 0.5, and 2.0 hours were used to identify TMP degradation products. 

71 Solid-phase extraction (SPE) was used to concentrate TMP and its metabolites in the samples. 

72 Waters Oasis HLB cartridges (WAT106202, 6 cc/200 mg) were pre-conditioned with 5.0 mL 

73 methanol and 5.0 mL ultrapure water in the SPE analysis before they were loaded with 1.0 mL 

74 samples. The cartridges were vacuum-dried for 10 minutes after loading, and the samples were 

75 eluted with 1.0 mL of methanol and stored in 2 mL microtubes. Untargeted analysis was 

76 performed with a liquid chromatography high-resolution accurate mass spectrometry (LC-

77 HRAM) fitted with a Q Exactive Plus Orbitrap mass spectrometer (Thermo Fisher Scientific, 

78 Waltham, USA) and connected to a binary pump UltiMate 3000 HPLC (Sunnyvale, USA).

79

80 Superoxide radical detection

81 The presence of superoxide radical (O2
.-) was determined by the reaction between O2

.- 
82 and nitroblue tetrazolium chloride (NBT) (Goto et al. 2004). Briefly, 0.5 mg SAZn@BC was 

83 added into 10 μM NBT solution (10 mL) and stirred at 400 rpm for one hour. 2 mL samples 

84 were taken at 0, 30, and 60 mins and filtered through a 0.45 μm syringe filter. NBT in the 

85 filtrate was analyzed by a UV-vis-NIR spectrophotometer (Hitachi U-4100) at 260 nm.

86

87 Hydrogen peroxide detection   

88 The generation of hydrogen peroxide (H2O2) was confirmed by the reaction between H2O2 
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89 and metavanadate to produce peroxovanadate (Nogueira et al. 2005). 0.5 mg SAZn@BC was 

90 added into 0.2 mM ammonia metavanadate solution (10 mL) and stirred at 400 rpm for 20 

91 minutes with pH adjusted to 3.0, 5.0, and 6.0, respectively. The mixture of 0.2 mM H2O2 and 

92 0.2 mM ammonia metavanadate was stirred at 400 rpm for 20 minutes as a control. The 

93 produced peroxovanadate was detected with a UV-vis-NIR spectrophotometer (Hitachi U-

94 4100) at 450 nm.
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111 Section B. Supporting Figures
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113 Figure S1. TMP removal by SAZn@BC with different Zn wt%. Reaction conditions: [TMP0]= 

114 10.0 μM, [Biochar] = 0.2 g/L, [pH] = 4.3, T = 25.0°C.
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122

123 Figure S2. Single catalyst model of SAZn@BC for DFT calculation.
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136

137

138 Figure S3. Plausible degradation products and degradation pathways of TMP by SAZn@BC.
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148 Figure S4. MS1 and MS2 spectra of possible TMP degradation metabolites.
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150 Figure S5. The effect of Do level on the performance of TMP removal by SAZn@BC Reaction 

151 conditions: [TMP
0
] = 10 μM, [Biochar] = 0.2 g/L, [pH] = 4.5, T = 25°C.
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160

161 Figure S6. Detection of superoxide radical in SAZn@BC system. Reaction condition: 

162 [Biochar] = 0.5 g/L, [NBT]0=10 μM. 
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172

173 Figure S7. Proposed reactions for the reactive species generation by the SAZn@BC.
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189

190 Figure S8. Detection of H2O2 in SAZn@BC system. Reaction condition: [Biochar] = 0.5 g/L, 

191 [NH4VO3]0 = 0.2 mM. H2O2 reference has a concentration of 0.2 mM.
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202 Figure S9. Binding free energy between SAC, O2, OOH and H2O2 (H2Q for hydroquinone 

203 state and Q for quinone state). 
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214

215 Figure S10. (a) Trimethoprim (TMP) removal by SAZn@BC in the presence of different 

216 inorganic anions in the solution. Reaction conditions: Running time = 10 hours, [TMP0] = 10 

217 μM, [Biochar] = 0.2 g/L, [CO3
2-]=50 mM, [PO4

3-] =50 mM, [Cl-]=50 mM,  [Br-]= 50mM. 

218 pH=6.0, T = 25.0°C.

219

220

221

222

223

224

225

226

227

228



S16

229

230

231

232

233

234

235 Figure S11. (a) Trimethoprim (TMP) degradation by SAZn@BC regenerated at different 

236 reheating temperatures after first cycle of reaction. (b) TMP degradation by SAZn@BC 

237 regenerated at different reheating temperatures after second cycle of reaction.
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251

252 Figure S12. XPS spectra of SAZn@BC before and after the reaction. (a) The O 1s spectrum, 

253 and (b) The C 1s spectrum. The spectra of SAZn@BC before the reaction are at the top and 

254 after the reaction are at the bottom in each panel. 
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267 Section C. Supporting Tables

268 Table S1. Free energy of intermediates at potential relative to free catalyst and oxygen for 

269 SAZn@BC containing Zn sites.

Reaction R1 R3 R4

Free energy (eV) at U = 0 V -1.70 -1.91 -1.40

Free energy (eV) at U = 0.22 V -1.70 -1.69 -0.96

270

271

272 Table S2. Free energy of intermediates at potential relative to free catalyst and oxygen for 

273 SAZn@BC without Zn sites.

Reaction R1 R3

Free energy (eV) at U = 0 V 0.48 -0.85

Free energy (eV) at U = 0.22 V 0.48 -0.62

274

275

276 Table S3. Partial charge from Natural Population Analysis values for catalyst 

Combination SAC/O2 SAC/.OOH SAC/TMP

Partial charge 0.76 0.76 -0.10
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281 Table S4. Comparison of the second order rate constant of TMP degradation in different 

282 catalyst systems 

Catalyst Dosage 
(g L–1)

System Initial 
TMP 

concentrat
ion (μM)

Secon 
rate 

constant 
(L/g.min)

Reference

SAZn@BC 0.2 Catalyst only 10 8.07x10-2 This work

N-dopped 
Biochar

1 Persulfate 
activation

45 8.7x10-3 (Annamalai and 
Shin 2022)

Malt rootlet 
biochar

0.045 persulfate 
activation

3.7 6.88x10-2 (Grilla et al. 
2020)

Co3O4/BiOI 0.8 Photocatalysis 0.07 1.57x10-2 (Malefane et al. 
2020)

Co-doped 
organic 
aerogels

0.01 Photocatalysis 10 1.31 (Bolobajev et 
al. 2019)

Ni-doped 
organic 
aerogels

0.01 Photocatalysis 10 1.48 (Bolobajev et 
al. 2019)

Zn-doped 
organic 
aerogels

0.01 Photocatalysis 10 1.24 (Bolobajev et 
al. 2019)

Fe-doped 
organic 
aerogels

0.01 Photocatalysis 10 1.21 (Bolobajev et 
al. 2019)

TiO2-P25 1 Photocatalysis 1 2.4 x10-3 (Oros-Ruiz et 
al. 2013)

Au/TiO2-P25 1 Photocatalysis 1 5.2x10-3 (Oros-Ruiz et 
al. 2013)

Ag/TiO2-P25 1 Photocatalysis 1 5.2x10-3 (Oros-Ruiz et 
al. 2013)
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Cu/TiO2-P25 1 Photocatalysis 1 4.5x10-3 (Oros-Ruiz et 
al. 2013)

Ni/TiO2-P25 1 Photocatalysis 1 3.0x10-3 (Oros-Ruiz et 
al. 2013)
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