Supplementary Material

Construction of Pd-TiO_x interfaces for selective hydrodeoxygenation of C=O bands in vanillin by supporting Pd nanoparticles on ETS-10 zeolite

Jianbin Huang,^{a+} Chang Zhou,^{a+} Jian Zhang,^{*a} Hao Meng,^a Shiyao Lu,^b and Feng-Shou Xiao^{* ab}

^a Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of

Chemical Technology, Beijing 100029, China.

^b Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

† These authors contribute equally.

**E-mail addresses*: jianzhangbuct@mail.buct.edu.cn (J. Zhang); fsxiao@zju.edu.cn (F.-S. Xiao).

Supplementary Figures

Fig. S1 Framework structure of ETS-10. TiO_x nanowires and SiO₂ framework are shown in blue and gray, respectively. The counter cations (H^+ , Na^+ and K^+) are not shown for clarity.

Fig. S2 Pd nanoparticle size distribution of the Pd/ETS-10 sample.

Fig. S3 TEM images of the (a) Ru/ETS-10, (b) Pt/ETS-10, (c) Rh/ETS-10, and (d) Au/ETS-10. Insets: metal particle size distributions.

Fig S4. XRD patterns of the Pd/TiO₂ and Pd/SiO₂ samples.

Note: The TiO_2 and SiO_2 were of anatase and quartz phase, respectively.

Fig S5. SEM images of the (a) Pd/TiO_2 and (b) Pd/SiO_2 samples.

Fig S6. N_2 sorption isotherms of the Pd/TiO₂ and Pd/SiO₂ samples.

Fig. S7 TEM images of the (a) Pd/TiO_2 and (b) Pd/SiO_2 samples. Insets: metal particle size distributions.

Fig. S8 Catalytic hydrodeoxygenation of phenol and anisole over various catalysts. Typical reaction conditions: 6.6 mmol of substrate, 0.2 g of catalyst, 50 g of H₂O, 1 MPa of H₂, 120 °C, and 1.5 h.

Fig. S9 TOF values in the catalytic hydrodeoxygenation of vanillin and vanillyl alcohol.

Fig. S10 Activation energies of (a) vanillin and (b) vanillyl alcohol over the Pd/ETS-10 and Pd/TiO₂ catalysts. Reaction conditions for vanillin reaction: 400 mg of vanillin, 2 mg of catalyst, 20 g of H₂O, 1 MPa of H₂, 120 °C, 0.083 h. Reaction conditions for vanillyl alcohol: 100 mg of vanillyl alcohol, 1 mg of catalyst, 5 g of H₂O, 1 MPa of H₂, 120 °C, and 0.083 h.

Fig. S11 Dependence of catalytic activity in hydrodeoxygenation of vanillin on time for a reaction system before and after separation of Pd/ETS-10 catalyst. Reaction conditions: 200 mg of vanillin, 5.1 mg of catalyst, 10 g of H_2O , 1 MPa of H_2 , 120 °C.

Supplementary Table

Sample	metal loading amount (wt%) ^a		
Pd/ETS-10	0.33		
Pd/TiO ₂	0.46		
Pd/SiO ₂	0.20		
Pt/ETS-10	0.67		
Au/ETS-10	0.12		
Rh/ETS-10	0.91		
Ru/ETS-10	1.04		

 Table S1.
 Textual parameters of the Pd catalysts.

^a determined by ICP analysis

Catalyst	Temperature (°C)	Time (h)	P _{H2} (MPa)	Conversion (%)	Selectivity (%)	Reference
Pd/C	100	3	3	100	92	[1]
Pd-PTA/ZrO ₂	80	1.5	0.1	>99	>99	[2]
Pd/PHS	R.T.	8	2	>99	98.2	[3]
Pd/BC	60	4	2	>99	92.8	[4]
Ga-Cu/HNZY	180	2.5	1	>99	>99	[5]
Ni ₂ P/HY	220	5	2	>99	>99	[6]
Ni₃Co@NC@C	170	2	1	>99	>99	[7]
Pd/ETS-10	60	5	2	>99	93.0	This work

 Table S2. Comparison of the catalytic results between the Pd/ETS-10 catalyst and the selected examples of some

 representative Pd and no-noble catalysts in the hydrodeoxygenation of vanillin.

Note: The selection criteria are as-follows: Pd catalysts are active for the hydrodeoxygenation of vanillin at different reaction temperatures. Therefore, we chose several representative Pd-based catalysts performed at different reaction temperatures (references 1-4). Notably, at the same temperature, our Pd/ETS-10 catalyst exhibited comparable activity to that of the Pd/BC catalyst (reference 4). In addition, we also compared our catalyst with representative non-noble metal catalysts (references 5-7). Notably, our Pd/ETS-10 catalyst is more active than the Ni, Co, and Cu catalysts.

References

- 1 J. L. Santos, P. Mäki-Arvela, J. Wärnå, A. Monzón, M. A. Centeno and D. Y. Murzin, *Appl. Catal. B-Environ.*, 2020, **268** 118425.
- 2 Z. Gao, Z. Zhou, M. Wang, N. Shang, W. Gao, X. Cheng, S. Gao, Y. Gao and C. Wang, Fuel, 2023, 234 126768.
- 3 R. Yangcheng, Y. Cui, S. Luo, J. Ran and J. Wang, *Micropor. Mesopor. Mater.*, 2023, **350**, 112460.
- 4 J. Ran, R. YangCheng, Y. Cui and J. Wang, ACS Sustain. Chem. Eng., 2022, 10, 7277-7287.
- 5 D. Verma, R. Insyani, H. S. Cahyadi, J. Park, S. M. Kim, J. M. Cho, J. W. Bae and J. Kim, *Green. Chem.*, 2018, **20**,

3253-3270.

- 6 Y. Y. Geng, M. Lang, G. T. Li, W. Y, Z. S. Yang and H, L, Catal. Lett., 2023, 153, 911-920.
- 7 Y. P. Z, J. W. Z, G. L. F, L. Y and F, L, *Dalton. Trans.*, 2022, **51**, 2238-2249.