Supporting Information

Enhanced sensitivity towards hydrogen by a TiN interlayer in Pddecorated SnO₂ nanowires

Clémence Badie,^{1†} Jae-Hyoung Lee,^{2†} Ali Mirzaei,³ Hyoun Woo Kim,^{4#} Syreina Sayegh,^{5§} Mikhael Bechelany,^{5,6#} Lionel Santinacci,^{1#} and Sang Sub Kim^{7#}

¹Aix Marseille Univ, CNRS, CINaM, Marseill 13009, France

²*Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul* 02792, *Republic of Korea*

³Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 715557-13876, the Islamic Republic of Iran

⁴Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea

⁵Institut Européen des Membranes, IEM – UMR 5635, University of Montpellier, CNRS, ENSCM, Place Eugène Bataillon, Montpellier 34095, France.

⁶ Gulf University for Science and Technology, GUST, Kuwait

⁷Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea.

[†] Co-first Authors

Corresponding authors

Fig. S1. (a) Growth of SnO_2 NWs by VLS growth method. (b) Schematic of a typical gas sensing device and (c) gas sensing measurement setup.

(a)

TiN deposition proceeds according to a transamination reaction proposed earlier^{1,2} in which TDMAT can react with up to three active sites (here TDMAT reacts with two $-NH_x$ surface groups).

Fig. S2. Schematic description of the TiN deposition mechanism from TDMAT and NH₃: (a) Injection of TDMAT, (b) transamination reaction, (c) injection of NH₃, and (d) removal of ligands.

Fig. S3. ALD sequence during Pd deposition from $Pd(hfac)_2$ and formaldehyde. The steps are described in the text.

Steps 1 and 2 consist of the adsorption of the $Pd(hfac)_2$ precursor onto the surface and its reaction with the hydroxyl surface sites and a subsequent Hhfac release (**Fig. S2a, b**). After the exposition of the surface to the second precursor (step 3), Pd(hfac) is reduced by formaldehyde (**Fig. S2c**). A –Pd–H_x termination is created at the active site and Hhfac, CO and H₂ are released during step 4 (**Fig. S2d**)

Fig. S4. EDS spectra (a) and XPS survey (b) of SnO_2 NWs covered by TiN and Pd. The detected elements are indicated on the corresponding peaks.

Fig. S5. I-V curves of Pd/TiN (0.5, 1, 2, 5 nm)/SnO₂ NWs gas sensors

Fig. S6. Transient resistance curves and response plots of (a), (b) Pd/TiN (0.5 nm)/ SnO₂ NWs (c), (d) Pd/TiN (2 nm)/ SnO₂ NWs and (e), (f) Pd/TiN (2 nm)/ SnO₂ NWs, respectively.

Fig. S7. (a) Transient resistance curves of Pd (25, 50, 100, 200 cycles)/TiN (1 nm)/ SnO_2 NWs and (b) response plots to 1-10 ppm of H₂ gas.

Fig. S8. (a) Transient resistance curves of SnO_2 NWs and (b) Pd/SnO₂ NWs gas sensors to 1-10 ppm of H_2 gas.

Fig. S9: Comparison of response of different gas sensors (i) Pd/TiN (0.5 nm)/SnO₂ NWs (ii) Pd/TiN (1 nm)/SnO₂ NWs (iii) Pd/TiN (2 nm)/SnO₂ NWs (iv) Pd/TiN (5 nm)/SnO₂ NWs (v) TiN (1 nm)/SnO₂ NWs (vi) TiN (2 nm)/SnO₂ NWs (vii) TiN (5 nm)/SnO₂ NWs (viii) Pd/SnO₂ NWs (ix) pristine SnO₂ NWs to 1, 5 and 10 ppm H₂ gas.

Fig. S10. Response and recovery time of Pd/TiN (1 nm)/SnO₂ NWs and to 10 ppm of tested gases.

Fig. S11. (a) Transient resistance curves of Pd/TiN (1 nm)/ SnO_2 NWs and (b) response plots to 10 ppm of H₂ gas in the presence of relative humidity.

Fig. S12. (a) Transient resistance curves of 2 years aged Pd/TiN $(1 \text{ nm})/\text{SnO}_2$ NWs and (b) response comparison between fresh and 2 years aged s to 10 ppm of H₂ gas.

Fig. S13. (a) Transient resistance curves of Pd/TiN (1 nm)/ SnO_2 NWs to various concentration of H₂ gas and (b) correspond response plots.

Fig. S14. Band diagram of Pd, SnO₂ and (a) TiN 1 nm, (b) 2, 5 nm.

REFERENCES

- 1. J. W. Elam, M. Schuisky, J. D. Ferguson and S. M. George, Thin Solid Films, 2003, 436, 145-156.
- 2. J. C. F. Rodríguez-Reyes and A. V. Teplyakov, J. Phys. Chem. C, 2007, 111, 16498-16505.