Supporting Information

On the Direct Correlation between the Copper Current Collector Surface Area and 'Dead Li' Formation in Zero Excess Li Metal Batteries

Egy Adhitama,^{a,b,*,‡} Andam Deatama Refino,^{d,e,‡} Tobias Brake,^a Jan Pleie,^{a,b} Christina Schmidt,^c Feleke Demelash,^a Kerstin Neuhaus,^c Steffen Bornemann,^d Simon Wiemers-Meyer,^a Erwin Peiner,^d Martin Winter,^{a,c} Hutomo Suryo Wasisto,^f Tobias Placke,^{a,*}

^a University of Münster, MEET Battery Research Center, Institute of Physical Chemistry, Corrensstr. 46, 48149 Münster, Germany

^bUniversity of Münster, International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), Corrensstr. 40, 48149 Münster, Germany ^c Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany

^d Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106, Braunschweig, Germany

^e Engineering Physics Program, Institut Teknologi Sumatera (ITERA), Jl. Terusan Ryacudu, Way Huwi, 35365 Lampung Selatan, Indonesia

^f PT Nanosense Instrument Indonesia, Umbulharjo, Yogyakarta, 55167, Indonesia

[‡]E. Adhitama and A. D. Refino contributed equally to this work.

*Correspondence: <u>egyadhitama@uni-muenster.de</u> (EA) and <u>tobias.placke@uni-muenster.de</u> (TP)

Figure S1. Confocal laser scanning microscope (CLSM) images showing the top-view colored contour profile of (a) Cu/B and (b) Cu/C. Depth profiles of (c) Cu/B and (d) Cu/C display different depths resulting from different laser powers and numbers of repetitions.

Figure S2. Low-magnification top-view SEM images showing the ordered tortuosity of (a) Cu/B and (b) Cu/C.

Figure S3. 3D topography images (2 $\mu m \times 2 \ \mu m)$ taken with AFM technique of Cu/A

Figure S4. (a) Full XPS core spectrum for all Cu CC samples. (b) Associated atomic concentration ratios of all Cu CC derived from the survey scan for Cu 2p and O 1s.

Figure S5. Low magnification top-view SEM images of the 'dead Li' on (a) Cu/A, (b) Cu/B, and (c) Cu/C. Green color indicates the accumulated 'dead Li'. All samples were cycled for 50 cycles at 0.5 mA cm⁻² for 0.5 mAh cm⁻². The measurements were taken in a stripped state from Cu || Li metal cells.

Figure S6. C and Cu element observation at the entire Cu CC electrode surface after 50 cycles in Cu \parallel Li metal cells visualized and analyzed by LA-ICP-MS of (a) Cu/A, (b) Cu/B, and (c) Cu/C.

Figure S7. (a) Cycling performance of the three Cu || Li metal cells at 0.025 mA cm⁻² for the first three cycles followed by 0.5 mA cm⁻² for subsequent cycles. (b) Electrochemical voltage profile of the 80th cycle for lithium plating and stripping of all three samples. The areal capacity was 0.5 mAh cm⁻².

Figure S8. Electrochemical stability profile of the three Cu || Li metal cells at various high current densities and high areal capacities.

Figure S9. (a) Specific capacity *vs.* cycle number plots, (b) $\Delta V vs.$ cycle number plots, and (c) Accumulated Coulombic inefficiency *vs.* cycle number plots of all three Cu electrode samples against NCM-811 as positive electrodes within a cell voltage range of 2.8–4.2 V (at 0.33C).

Figure S10. EIS spectra of all samples in Cu || Cu symmetric cells. An amount of 0.5 mAh cm⁻² of Li was deposited on one of the electrodes and then kept for rest for 24 h.