#### **Electronic Supplementary Information**

# Improving the Performance for Direct Electrolysis of CO<sub>2</sub> in

## Solid Oxide Electrolysis Cell with Sr<sub>1.9</sub>Fe<sub>1.5</sub>Mo<sub>0.5</sub>O<sub>6-δ</sub> Electrode

## via Infiltration of Pr<sub>6</sub>O<sub>11</sub> Nanoparticles

Wanhua Wang<sup>a</sup>, Haixia Li<sup>a</sup>, Clarita Y. Regalado Vera<sup>b,c</sup>, Jie Lin<sup>a</sup>, Ka-Young Park<sup>a</sup>, Taehee Lee<sup>a</sup>, Dong Ding<sup>\*b</sup> and Fanglin Chen<sup>\*a</sup>

<sup>a</sup>Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA. <sup>b</sup>Energy & Environmental Science and Technology, Idaho National Laboratory, Idaho Falls, ID, 83415, USA.

<sup>c</sup>Department of Chemical & Materials Engineering, New Mexico state University, Las Cruses, NM, 88003, USA.

\*Corresponding author: Email: <u>dong.ding@inl.gov</u> (D. D.); <u>chenfa@cec.sc.edu</u> (F. C.)



Figure S1. XRD profiles of the mixture powder of 50wt.%SFM with 50wt.%LSGM treated in air at 1000°C for 2h.



Figure S2. Cross-sectional microstructure of 14.8wt.% $Pr_6O_{11}$ -SFM single cell. (a) The cross-section view of the entire cell, (b) the magnified cathode/electrolyte view before testing, (c) the cathode/electrolyte interface after long-term stability testing.



Figure S3.  $CO_2$  electrolysis performance comparison of single cells with SFM and 14.8wt.%Pr<sub>6</sub>O<sub>11</sub>-SFM cathode, respectively. I-V curves (a) and EIS results (b) of 14.8wt.%Pr<sub>6</sub>O<sub>11</sub>-SFM single cells at different temperature. I-V curves (c) and EIS results (d) of SFM single cells at different temperature.



Figure S4.  $CO_2$  electrolysis performance comparison of symmetrical cells with SFM and 14.8wt.% $Pr_6O_{11}$ -SFM electrode at different temperature.



Figure S5. Schematic diagram of three-electrode cell.

| Cell configuration                                     | Electrolyte    | Current density | Polarization resistance | Ref.      |
|--------------------------------------------------------|----------------|-----------------|-------------------------|-----------|
| Cathode/Electrolyte/Anode                              | thickness (µm) | (A/cm²) at 1.5V | (Ω cm²) at OCV          |           |
| LSCrM-SDC/YSZ/LSCrM-SDC                                | 2000           | 0.10            | 3.1                     | S1        |
| LSFT/YSZ/LSFT                                          | 700            | 0.28            |                         | S2        |
| Ni@LSTM/YSZ/LSM <sup>1</sup> -SDC                      | 500            | 0.43            |                         | S3        |
| LSFM-GDC/YSZ/LSFM-DC                                   | 200            | 0.51            | 0.85                    | S4        |
| LSCFN-GDC/YSZ/LSCFN-GDC                                | 200            | 0.442           | 0.683                   | S5        |
| LSFN-GDC/YSZ/LSFN-GDC                                  | 400            | 0.55            | 0.12                    | S6        |
| LSTMC/LSGM/LSM <sup>2</sup>                            | 350            | 1.24            | 0.311                   | S7        |
| LSF/LSGM/LSCF-SDC                                      | 240            | 0.76            | 1.31                    | S8        |
| 12.8wt.%GDC-SFM/YSZ/LSM <sup>3</sup> -YSZ              | 500            | 0.45            |                         | S9        |
| SFM-YSZ/YSZ/LSM-YSZ                                    | 10             | 1.10            | 0.41                    | S10       |
| SFM-SDC/LSGM/LSCF-SDC                                  | 230            | 1.09            | 0.512                   | S11       |
| F-SFM/LSGM/LSCF-SDC                                    | 250            | 1.36            | 0.656                   | S12       |
| SFMM-SDC/LSGM/LSCF-SDC                                 | 400            | 1.35            | 0.58                    | S13       |
| SFM/LSGM/LSCF                                          | 310            | 0.76            | 1.38                    | This work |
| 14.8wt.%Pr <sub>6</sub> O <sub>11</sub> -SFM/LSGM/LSCF | 310            | 1.61            | 0.81                    | This work |

Table S1. Performance comparison at 800  $^\circ\text{C}$  for pure CO\_2 electrolysis at 1.5V

 $LSCrM = La_{0.2}Sr_{0.2}Scr_{0.5}Mn_{0.5}O_{3-6}; SDC = Ce_{0.8}Sm_{0.2}O_{2-6}; GDC = Ce_{0.8}Sm_{0.2}O_{2-6}; LSFT = La_{0.3}Sr_{0.7}Fe_{0.7}TiO_{3-6}; LSTM = La_{0.2}Sr_{0.8}Ti_{0.9}Mn_{0.1}O_{3+6}; LSM^1 = (La_{0.8}Sr_{0.2})_{0.95}MnO_{3-6}; LSFM = La_{0.6}Sr_{0.4}Fe_{0.9}Mn_{0.1}O_{3-6}; LSCF = La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-6}; \\ LSCFN = La_{0.4}Sr_{0.6}CO_{0.2}Fe_{0.7}Nb_{0.1}O_{3-6}; LSTMC = (La_{0.2}Sr_{0.8})_{0.95}Ti_{0.55}Mn_{0.35}Cu_{0.1}O_{3-6}; LSM^2 = La_{0.8}Sr_{0.2}MnO_{3-6}; \\ LSF = La_{0.8}Sr_{0.2}FeO_{3-6}; SFM = Sr_2Fe_{1.5}Mo_{0.5}O_{6-6}; LSM^3 = (La_{0.85}Sr_{0.15})_{0.9}Mn_{3-6}; F-SFM = F-Sr_2Fe_{1.5}Mo_{0.5}O_{6-6}; \\ SFMM = Sr_2Fe_{1.4}Mn_{0.1}Mo_{0.5}O_{6-6}; \\$ 

Table S2: Polarization resistance values of 14.8wt.%  $Pr_6O_{11}$ -SFM and SFM electrodes under open circuit conditions in pure  $CO_2$  atmosphere at different temperatures

| Electrode                                    | $R_p$ ( $\Omega~cm^2)$ at 800°C | $R_p$ ( $\Omega~cm^2)$ at 750°C | $R_p$ ( $\Omega~cm^2)$ at 700°C |
|----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 14.8wt.%Pr <sub>6</sub> O <sub>11</sub> -SFM | 0.61                            | 1.09                            | 2.18                            |
| SFM                                          | 0.95                            | 1.53                            | 2.62                            |

#### **Notes and references**

- S1. S. Xu, S. Li, W. Yao, D. Dong and K. Xie, *J. Power Sources*, 2013, **230**, 115–121.
- S2. Z. Cao, B. Wei, J. Miao, Z. Wang, Z. Lü, W. Li, Y. Zhang, X. Huang, X. Zhu, Q. Feng and Y. Sui, *Electrochem. commun.*, 2016, 69, 80–83.
- S3. L. Ye, M. Zhang, P. Huang, G. Guo, M. Hong, C. Li, J. T. S. Irvine and K. Xie, Nat. Commun., 2017, 8, 1–10.
- S4. X. Peng, Y. Tian, Y. Liu, W. Wang, L. Jia, J. Pu, B. Chi and J. Li, J. CO2 Util., 2020, 36, 18–24.
- S5. Z. Yang, C. Ma, N. Wang, X. Jin, C. Jin and S. Peng, J. CO2 Util., 2019, 33, 445–451.
- S6. Y. Tian, H. Zheng, L. Zhang, B. Chi, J. Pu and J. Li, J. Electrochem. Soc., 2018, 165, F17.
- S7. X. Yang, K. Sun, M. Ma, C. Xu, R. Ren, J. Qiao, Z. Wang, S. Zhen, R. Hou and W. Sun, *Appl. Catal. B Environ.*, 2020, 272, 118968.
- S8. Y. Yang, Y. Li, Y. Jiang, M. Zheng, T. Hong, X. Wu and C. Xia, *Electrochim. Acta*, 2018, **284**, 159–167.
- S9. H. Lv, Y. Zhou, X. Zhang, Y. Song, Q. Liu, G. Wang and X. Bao, J. Energy Chem., 2019, 35, 71-78.
- S10. Y. Li, P. Li, B. Hu and C. Xia, J. Mater. Chem. A, 2016, 4, 9236–9243.
- S11. Y. Li, X. Chen, Y. Yang, Y. Jiang and C. Xia, ACS Sustain. Chem. Eng., 2017, 5, 11403–11412.
- S12. Y. Li, Y. Li, Y. Wan, Y. Xie, J. Zhu, H. Pan, X. Zheng and C. Xia, Adv. Energy Mater., 2019, 9, 1803156.
- S13. Y. Jiang, Y. Yang, C. Xia and H. J. M. Bouwmeester, J. Mater. Chem. A, 2019, 7, 22939–22949.