Supplementary Information

Hybrid polymer-liquid electrolytes for lithium-ion batteries: effect of porosity on the ionic and molecular mobility.

Martina Cattaruzza ${ }^{1}$, Yuan Fang², István Furó², Göran Lindbergh³, Fang Liu4, Mats Johansson ${ }^{1 *}$
${ }^{1}$ Division of Coating Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
${ }^{2}$ Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
${ }^{3}$ Division of Applied Electrochemistry, Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
${ }^{4}$ Division of Materials and Manufacture, Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

Figure S1: The chemical structure of the main chemicals used in this study: a) monomer Bisphenol A ethoxylate dimethacrylate (BPAMA), b) ethylene carbonate (EC), c) propylene carbonate (PC), d) LiTFSI salt.

- Conversion calculation of the acrylate groups with FTIR analysis

The conversions of the acrylate groups with FTIR for all the different formulations was calculated as following:

Conversion $=\left(1-\frac{A_{\text {resin }, C=0} * A_{\text {film }, C=C}}{A_{\text {resin }, C=C} * A_{\text {film }, C=O}}\right) * 100$
where $A_{\text {resin, }} \mathrm{c}=0$ is the absorbance area of the carbonyl peak of the ester group at $1715 \mathrm{~cm}^{-1}$ of the uncured resin, $A_{\text {film, } c=c}$ is the absorbance area of the vinyl peak at $1637 \mathrm{~cm}^{-1}$ of the cured film, $A_{\text {resin, }}$, $c=c$ is the absorbance area of the vinyl peak at $1637 \mathrm{~cm}^{-1}$ of the uncured resin and $A_{\text {film, }} c=0$ is the absorbance area of the carbonyl peak of the ester group at $1715 \mathrm{~cm}^{-1}$ of the cured film.

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectra of the sample with pBPAMA as is (blue) and after having the pBPAMA soaked in acetonitrile (orange).

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectra of pure EC , pure PC , a mixture of $\mathrm{EC}: \mathrm{PC}(1: 1 \mathrm{wt} \%), 1 \mathrm{M}$ LiTFSI in EC:PC (1:1 $w t \%)$, 2 M LiTFSI in EC:PC (1:1 wt\%). In the EC:PC 1:1 wt\%, the NMR peak at 4.52 ppm is contributed by EC and PC molecules at the molar ratio of 4.6:1.

Figure S4: The diffusional decay obtained in different molecular components in the HE 50 wt\% sample. ${ }^{1} \mathrm{H}$ signal is from the solvent (the peak at 4.52 ppm , methylene groups from both EC and PC, see Figure S 2), the ${ }^{19} \mathrm{~F}$ signal is from the anion and the ${ }^{7} \mathrm{Li}$ signal is from the cation. b is $\gamma^{2} \delta^{2} g^{2}\left(\Delta-\frac{\delta}{3}\right)$. I and I_{0} are the signal intensities with and without gradient, respectively.

Figure S5: FTIR spectra of the resin (before curing) and of the film (after curing) showing the disappearance of the vinyl stretch peak at $1637 \mathrm{~cm}^{-1}$ for HE $40 \mathrm{wt} \%$.

Figure S6: FTIR spectra of the resin (before curing) and of the film (after curing) showing the disappearance of the vinyl stretch peak at $1637 \mathrm{~cm}^{-1}$ for HE $45 \mathrm{wt} \%$.

Figure S7: FTIR spectra of the resin (before curing) and of the film (after curing) showing the disappearance of the vinyl stretch peak at $1637 \mathrm{~cm}^{-1}$ for pBPAMA.

Figure S8: Cross-sectional SEM micrographs of cryo-fractured HE 45 wt\% (left) and of HE $50 \mathrm{wt} \%$ (right). All samples were dried beforehand.
(a)

(b)

Figure S9: BIB-SEM images of HE $40 \mathrm{wt} \%$ (left) vs HE $50 \mathrm{wt} \%$ (right) electrolyte content HEs at different magnifications (a) 50k (b) 200 k.

- Calculation of the absorbed LiTFSI in soaked pBPAMA

The concentration of absorbed LiTFSI was calculated as following:
In Table 3 we detected 1.11 mg PC and 1.16 mg EC released from pBPAMA soaked in 1 M electrolytes. The density of PC:EC $50 / 50 \mathrm{v} / \mathrm{v}$ was taken as $1.007 \mathrm{~g} / \mathrm{ml}$, thus the total volume of PC/EC mixture is
$\frac{1.11+1.16}{1.0069}=2.254 \mu L$
The LiTFSI released from the same sample was 0.21 mg (Table 3). The molecular weight of LiTFSI is $287.09 \mathrm{~g} / \mathrm{mol}$. Thus its concentration in the released PC/EC is $\frac{0.21 \times 10^{-3}}{287.09 \times 2.254 \times 10^{-6}}=0.32 \mathrm{M}$.

Similarly, the concentration of absorbed LiTFSI in EC/PC for the pBPAMA soaked in 2 M electrolytes was calculated as
$\frac{1.20+1.22}{1.0069}=2.403 \mu L$
$\frac{0.16 \times 10^{-3}}{287.09 \times 2.403 \times 10^{-6}}=0.23 \mathrm{M}$.

Table S1: ${ }^{1} \mathrm{H}$ (solvent) ${ }^{\mathrm{a}},{ }^{19} \mathrm{~F}$ (anion) and ${ }^{7} \mathrm{Li}$ (cation) self-diffusion coefficients of the different electrolyte formulations

Samples	Average Conductivity $\left(\mathrm{S}^{*} \mathrm{~cm}^{-1}\right)$	Diffusion coefficients $\left(10^{-12} \mathrm{~m}^{2} / \mathrm{s}\right)$		
	$4.35^{*} 10^{-3}$	241	153	108
1 M LiTFSI	$3.66^{*} 10^{-5}$	0.86	2.28	1.19
HE 40 wt	$1.36^{*} 10^{-4}$	2.25	6.23	3.50
HE 45 wt\%	$2.94^{*} 10^{-4}$	7.17	13.0	9.75
HE 50 wt\%			${ }^{19} \mathrm{Fi}$	

${ }^{\text {a The }} 4.52 \mathrm{ppm}{ }^{1} \mathrm{H}$ peak (see Figure S2) was used to follow the solvent behavior. In the $1: 1$ solvent mixture, the diffusion coefficient of PC obtained from the diffusional decay of the 1.5 ppm peak is $2.24 \times 10^{-12} \mathrm{~m}^{2} / \mathrm{s}$. The overlapping EC/PC peak 4.52 ppm provides a diffusional decay that yields a diffusion coefficient of $2.44 \times 10^{-12} \mathrm{~m}^{2} / \mathrm{s}$. Since this latter peak is contributed in intensity by roughly 80% by EC, the EC diffusion coefficient in the $1: 1$ mixture is roughly $2.5 \times 10^{-12} \mathrm{~m}^{2} / \mathrm{s}$. Hence, the transport properties of the EC and PC molecules in the mixed solvent are roughly the same.

