Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Bimetallic Selenide Cu₄Mo₆Se₈ Nanosheet Arrays Grown on Carbon Skeleton via MOF-Derived with Enhanced Electrochemical Kinetics for High-Performance Sodium-Ion Batteries

Shuai Wang, Rujia Zou, *a Qian Liua, b and Huifang Chen*a

a. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China. E-mail: rjzou@dhu.edu.cn; hfchen@dhu.edu.cn
b. College of Science, Donghua University, Shanghai 201620, P. R. China

Fig. S1 (a) SEM image of Cu-Mo BMOF. (b) SEM image of CMSe/C composites.

Fig. S2 EDS spectrum of CMSe/C composites.

Fig. S3 The XPS survey spectrum of CMSe/C composites.

Fig. S4 (a) BET isotherm plots and (b) corresponding BJH pore size distributions of CMSe/C composites.

Fig. S5 (a) SEM image of pure MoSe₂ nanosheets. (b) XRD pattern of the pure MoSe₂.

Fig. S6 Galvanostatic charge/discharge curves of CMSe/C electrode at different current densities.

Fig. S7 (a) CV curves and (b) the capacitance contribution ratios of the MoSe₂ electrode at various scan rates.

Materials	ICE	Current Density	Ref.
SnSe ₂ /ZnSe@PDA	71.6 %	0.1 A g ⁻¹	1
CoSe ₂ @BCN-750	68.5 %	0.1 A g ⁻¹	2
CoSe ₂ @C NC	71.4 %	0.1 A g ⁻¹	3
CNT/FeSe ₂ /C	71.5 %	0.1 A g ⁻¹	4
CoSe₂@NC-NR/CNT	65.8 %	0.1 A g ⁻¹	5
Ni _{1.8} Co _{1.2} Se ₄ @NDDC	68.0 %	0.1 A g ⁻¹	6
MoSe ₂ /N-PCD	70.4 %	0.2 A g ⁻¹	7
NiCo ₂ Se ₄ /f-Ti ₃ C ₂	77.8 %	0.5 A g ⁻¹	8
CoSe ₂ /(NiCo)Se ₂	79.6 %	0.2 A g ⁻¹	9
FeCo-Se@NC	68.7 %	0.5 A g ⁻¹	10
a-SnSe/rGO	70.0 %	0.1 A g ⁻¹	11
Co _{0.85} Se-Fe ₇ Se ₈ @rGO	79.4 %	0.1 A g ⁻¹	12
ZnSe@C@rGO	68.1 %	0.1 A g ⁻¹	13
SnSe ₂ /FeSe ₂ @NC	72.5 %	0.2 A g ⁻¹	14
Cu₄Mo ₆ Se ₈ /C	80.5 %	0.5 A g ⁻¹	This Work

Table S1 ICE of various metal selenide composites applied as anode for SIBs reported in the previous literature.

Table S2 The cycle performance of Mo-based or Cu-based selenide electrodes in SIBs.

Materials	Cycle Performance	Current Density	Ref.
Cu₂Se	256 mAh g ⁻¹	10A g ⁻¹	15
	after 1000 cycles	210718	
MoSe ₂ /CN	328.7 mAh g ⁻¹	$1.0.4 \text{ m}^{-1}$	16
	after 500 cycles	1.0 A g -	10

Cu ₂ Se	308 mAh g ⁻¹	Ο 1 Δ σ ⁻¹	17
	after 50th cycles	0.1 7 8	
P-MoSe ₂ /N-CNT NF	372 mAh g ⁻¹	0 2 A g ⁻¹	18
	after 300 cycles	0.2 A 8	
MoSe ₂ /N-PCD	223 mAh g ⁻¹	2 Π Δ σ ⁻¹	7
	after 1000 cycles	2.0 A g	
MoS ₂ /N,P-rGO	236.6 mAh g ⁻¹	2 0 Λ σ⁻¹	19
	after 7000 cycles	2.0 A B	
MoSe ₂ @NPC/rGO	340 mAh g ⁻¹	0.5.4.~1	20
	after 500 cycles	0.3 A g	
Cu ₄ Mo ₆ Se ₈ /C	474 mAh g ⁻¹	2 Ο Δ σ ⁻¹	This W/ork
	after 2400 cycles	2.0 A g	

References

- 1 P. Liu, J. Han, K. J. Zhu, Z. H. Dong and L. F. Jiao, Adv. Energy Mater., 2020, 10, 2000741.
- H. Tabassum, C. X. Zhi, T. Hussain, T. J. Qiu, W. Aftab and R. Q. Zou, *Adv. Energy Mater.*, 2019, 9, 1901778.
- 3 B. Q. Li, Y. Liu, X. Jin, S. H. Jiao, G. R. Wang, B. Peng, S. Y. Zeng, L. Shi, J. M. Li and G. Q. Zhang, Small, 2019, 15, 1902881.
- 4 M. Yousaf, Z. P. Wang, Y. S. Wang, Y. J. Chen, U. Ali, M. Maqbool, A. Imran, N. Mahmood, P. Gao and R. P. S. Han, *Small*, 2020, **16**, 2002200.
- 5 S. K. Park and Y. C. Kang, ACS Appl. Mater. Interfaces, 2018, 10, 17203-17213.
- 6 B. H. Hou, Y. Y. Wang, D. S. Liu, Z. Y. Gu, X. Feng, H. S. Fan, T. F. Zhang, C. L. Lu and X. L. Wu, *Adv. Funct. Mater.*, 2018, **28**, 1805444.
- 7 X. C. Xie, K. J. Huang, X. Wu, N. Wu, Y. Y. Xu, S. K. Zhang and C. H. Zhang, *Carbon*, 2020, **169**, 1-8.
- 8 P. F. Huang, S. L. Zhang, H. J. Ying, Z. Zhang and W. Q. Han, *Chem. Eng. J.*, 2021, **417**, 129161.
- 9 S. K. Park, J. K. Kim and Y. C. Kang, J. Mater. Chem. A, 2017, 5, 18823-18830.
- 10 P. J. Wang, J. J. Huang, J. Zhang, L. Wang, P. H. Sun, Y. F. Yang and Z. J. Yao, *J. Mater. Chem. A*, 2021, **9**, 7248-7256.
- M. S. Wang, A. M. Peng, H. Xu, Z. L. Yang, L. Zhang, J. Zhang, H. Yang, J. C. Chen, Y. Huang and X. Li, *J. Power Sources*, 2020, **469**, 228414.
- 12 H. Wu, R. L. Yuan, M. J. Li, L. Liu, Y. H. Liu, Q. Song, W. Ai, H. F. Du, Z. Z. Du and K. Wang,

Carbon, 2022, **198**, 171-178.

- 13 S. Men, H. Zheng, D. J. Ma, X. L. Huang and X. W. Kang, J. Energy Chem., 2021, 54, 124-130.
- 14 X. Y. Gao, Y. X. Kuai, Z. X. Xu, Y. J. Cao, N. Wang, S. I. Hirano, Y. N. Nuli, J. L. Wang and J. Yang, Small Methods, 2021, 5, 2100437.
- 15 L. Y. Shao, S. G. Wang, J. P. Qi, Z. P. Sun, X. Y. Shi, Y. S. Shi and X. Lu, *Mater. Today Phys.*, 2021, **19**, 100422.
- 16 F. H. Zheng, W. T. Zhong, Q. Deng, Q. C. Pan, X. Ou, Y. Z. Liu, X. H. Xiong, C. H. Yang, Y. Chen and M. L. Lite, *Chem. Eng. J.*, 2019, **357**, 226-236.
- 17 T. Nagaura, J. L. Li, J. F. S. Fernando, A. Ashok, A. Alowasheeir, A. K. Nanjundan, S. Lee, D. V. Golberg, J. Na and Y. Yamauchi, *Small*, 2022, **18**, 2106629.
- 18 Y. H. Seon, Y. C. Kang and J. S. Cho, *Chem. Eng. J.*, 2021, **425**, 129051.
- 19 G. Y. Ma, Y. L. Zhou, Y. Y. Wang, Z. Y. Feng and J. Yang, Nano Res., 2021, 14, 3523-3530.
- 20 J. X. Wu, J. F. Yu, J. P. Liu, J. Cui, S. S. Yao, M. Ihsan-Ul Haq, N. Mubarak, A. Susca, F. Ciucci and J. K. Kim, *J. Power Sources*, 2020, **476**, 228660.