Supporting Information

Photothermal therapy for cancer cells by optically tunable Fe₂O₃@Au hexagonal nanodisks

Lin Lia, Fenglian Qia,b, Jiong Guo a, Jing Fan a, Wenxiang Zheng aa, Murtaza Ghulama, and Weizhi Wanga,

Zihui Meng^{*,a,c}, Lili Qiu^{*}

^a School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

^b CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
 ^c Yangtze Delta Region Academy of Bejing Institute of Technology, Jiaxing 314019, P. R. China. E-mail: m_zihui@yahoo.com

E-mail: qiulili@bit.edu.cn

Supplementary Figure 1. TEM images of (a) Fe_2O_3 , (b) Fe_2O_3 @SiO₂, and the side of (c) Fe_2O_3 @SiO₂, (d) Fe_2O_3 @void@Au seeds@RF,

Supplementary Figure 2 HRTEM of 120 nm Fe_2O_3 @Au From the HR-TEM image, the lattice spacing is 0.24 nm and 0.21 nm, which correspond to the (111) and (200) crystal planes of Au, respectively.

Supplementary Figure 3. SAED pattern of 120 nm Fe₂O₃@Au. The polycrystalline diffraction rings in the SAED pattern confirmed typical crystal planes of (111), (200), (220), (311) of Au.

Supplementary Figure 4. Elemental distribution spectrum of 120 nm Fe₂O₃@Au@RF

Supplementary Figure 5. The color of reaction solution during the growth of Au nanoshells.

Supplementary Figure 6. TEM images of Fe₂O₃ with the size of (a) 160 nm, (d) 210 nm, Fe₂O₃@SiO₂ with the Fe₂O₃ size of (b) 160 nm and (e) 210 nm, and Fe₂O₃@void@Au seeds@RF with the Fe₂O₃ size of (c) 160 nm and (f) 210 nm.

Table S1. The specific size of the AuNDs

diagonal size	thickness	of thick	iness of	thickness	of Au	diagonal size of Au	
of $Fe_2O_3(nm)$	$Fe_2O_3(nm)$	O ₃ (nm) RF(nm)		NDs(nm)		NDs(nm)	
120	21	24		56		155	
160	19	23		67		190	
210	24	34		80		265	

Supplementary Figure 7. The extinction peak positions of different sizes of NDs

Table S2. Summary of the parameters used for the calculation of the heat conversion efficiency.Were applicable, errors on the last digit are given in parentheses

	m	Ср	ΔT	Ts	I(W)	QD	η
Fe ₂ O ₃ @Au@RF	0.5	4.186	43.5	243	1	0.337816	47%
Water	0.5	4.186	9.8	170	1		

Tuble 55. The photomermal conversion efficiency of various of materials								
Materials	Laser (nm)	Time (min)	Power density (W·cm ⁻²)	ΔT (°C)	Concentration (mg·ml ⁻¹)	η	Ref.	
Gold hollow NRs	1064	5	0.2	35	0.15	33%	1	
Miniature hollow Gold	1064	10	0.7	17	0.0732	34%	2	
miniature Au/Ag NRs	1064	10	0.8	23.2	0.1	28.8%	3	
Gold nano-frameworks	1064	6	1	27.5	0.2	32.9%	4	
Gold nanostars	1064	5	1	14.3	0.1	36.4%	5	
Chitosan-carbon dot	808	5	1.5	57	0.2	25.2%	6	
Carbon Dots	808	8	1.4	25	0.02	30.6%	7	
Bi@C nanoparticles	1064	10	1	25.6	0.4	43.2%	8	
Cu ₃ BiS ₃	1064	6	1	30	0.1	40.7%	9	
Cu _{2-x} S nanodots	1064	5	1	30	0.1	30.8%	10	
Ni ₉ S ₈ nanoparticles	1064	10	0.7	20	0.1	46%	11	
CuS-Au heterostructures	1064	5	1.5	40	0.06	36.5%	12	
FePS ₃ nanosheets	1064	10	2	25	0.024	43.3%	13	
Metallic 1T Phase-MoS ₂	1064	5	1	43	0.5	43.3%	14	
Er: WSe ₂	808	10	0.6	42	0.2	35.2%	15	
H2a-4T+FBS	808	10	0.15	42.4	0.008	20.6%	16	
PDCDT	808	6	0.3	40.2	0.2	44.9%	17	
SPN	1064	10	1	28	0.03	46%	18	
L1057 NPs	980	8	1	30.3	0.1	38%	19	
TMB-F4TCNQ	1064	10	1	22.4	0.1	42.4%	20	
Fe ₂ O ₃ @Au@RF	808	8	1	43.5	0.1	47%	This work	

Table S3. The photothermal conversion efficiency of various of materials

References

[1] K. Cai, W. Zhang, J. Zhang, H. Li, H. Han, T. Zhai, ACS Appl Mater Interfaces, 10 (2018) 36703-36710.

[2] K. Cai, W. Zhang, M.F. Foda, X. Li, J. Zhang, Y. Zhong, H. Liang, H. Li, H. Han, T. Zhai, Small, 16 (2020) e2002748.

[3] Z. Mei, D. Gao, D. Hu, H. Zhou, T. Ma, L. Huang, X. Liu, R. Zheng, H. Zheng, P. Zhao, J. Zhou, Z. Sheng, Biomaterials, 251 (2020) 120092.

[4] J. Wang, J. Sun, Y. Wang, T. Chou, Q. Zhang, B. Zhang, L. Ren, H. Wang, Adv. Funct. Mater., 30 (2020).

[5] D. Zhu, M. Lyu, Q. Huang, M. Suo, Y. Liu, W. Jiang, Y. Duo, K. Fan, ACS Appl Mater Interfaces, 12 (2020) 36928-36937.

[6] H. Wang, S. Mukherjee, J. Yi, P. Banerjee, Q. Chen, S. Zhou, ACS Appl Mater Interfaces, 9

(2017) 18639-18649.

[7] Y. Li, G. Bai, S. Zeng, J. Hao, ACS Appl Mater Interfaces, 11 (2019) 4737-4744.

[8] W. Zhen, S. An, W. Wang, Y. Liu, X. Jia, C. Wang, M. Zhang, X. Jiang, Nanoscale, 11 (2019) 9906-9911.

[9] A. Li, X. Li, X. Yu, W. Li, R. Zhao, X. An, D. Cui, X. Chen, W. Li, Biomaterials, 112 (2017) 164-175.

[10] R. Hu, Y. Fang, M. Huo, H. Yao, C. Wang, Y. Chen, R. Wu, Biomaterials, 206 (2019) 101-114.

[11] Z. Lei, W. Zhang, B. Li, G. Guan, X. Huang, X. Peng, R. Zou, J. Hu, Nanoscale, 11 (2019) 20161-20170.

[12] Z. Wang, N. Yu, X. Li, W. Yu, S. Han, X. Ren, S. Yin, M. Li, Z. Chen, Chem. Eng. J., 381 (2020) 122613.

[13] Q. Zhang, Q. Guo, Q. Chen, X. Zhao, S.J. Pennycook, H. Chen, Adv. Sci. (Weinheim, Ger.), 7 (2020) 1902576.

[14] Z. Zhou, B. Li, C. Shen, D. Wu, H. Fan, J. Zhao, H. Li, Z. Zeng, Z. Luo, L. Ma, C. Tan, Small, 16 (2020) e2004173.

[15] Y. Huang, Y. Zhao, Y. Liu, R. Ye, L. Chen, G. Bai, S. Xu, Chem. Eng. J., 411 (2021) 128610.
[16] X. Zeng, Y. Xiao, J. Lin, S. Li, H. Zhou, J. Nong, G. Xu, H. Wang, F. Xu, J. Wu, Z. Deng, X. Hong, Adv. Healthcare Mater., 7 (2018) e1800589.

[17] Y. Jiang, J. Li, X. Zhen, C. Xie, K. Pu, Adv. Mater., 30 (2018) e1705980.

[18] T. Sun, J. Han, S. Liu, X. Wang, Z.Y. Wang, Z. Xie, ACS Nano, 13 (2019) 7345-7354.

[19] Y. Yang, X. Fan, L. Li, Y. Yang, A. Nuernisha, D. Xue, C. He, J. Qian, Q. Hu, H. Chen, J. Liu, W. Huang, ACS Nano, 14 (2020) 2509-2521.

[20] C. Ou, W. Na, W. Ge, H. Huang, F. Gao, L. Zhong, Y. Zhao, X. Dong, Angew. Chem., Int. Ed. Engl., 60 (2021) 8157-8163.

Supplementary Figure 8. Statistics of the number of Hela cells after adding different concentrations of (a) $Fe_2O_3@Au@RF$ and (b) $Fe_2O_3@Au$ nanosheets after laser irradiation for

3 min, and (c) the corresponding optical photos of cells ($\times 10$)