Supplementary Material for

Direct Hydrogenation of CO₂ to Ethanol at Ambient Conditions using Cu(I)-MOF in a Dielectric Barrier Discharge Plasma Reactor

Nan Zou^{a,b,c}, Jie Chen^{a,c}, Ting Qiu^{a,c 1}, Ying Zheng^{b 2}

^a College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, P.R.

China.

^b Department of Chemical and Biochemical Engineering, Western University, London,

ON N6A 3K7, Canada

^c Engineering Research Center of Reactive Distillation, Fujian Province Higher Education Institutes.

\

¹ Corresponding authors. E-mail addresses: tingqiu@fzu.edu.cn

² Corresponding authors. E-mail addresses: <u>ying.zheng@uwo.ca</u>

SECTION S1 SUPPLEMENTARY METHODS

Catalyst Characterization

The optical microscope images were photographed via the Nikon FASTCAM SA1.1. The N₂ adsorption-desorption isotherms and the heat of CO₂ adsorption was analyzed using ASAP2020 Plus physisorption. The thermal stability of Cu(I)-HKUSTn were evaluated through the thermogravimetry (TG) detection of the Netzsch STA449C. The surface morphology (SEM) was detected using the Hitachi S-4800 model device. X-ray diffraction (XRD) patterns of catalysts were obtained via the Bruker D8 Advance diffractometer equipped with CuKa radiation in the 2 θ range from 3° to 60°.

Parameter Definition

The carbon (in mol) of all the gaseous products (including unreacted CO_2) was quantified using a flow meter and a fully calibrated GC for 2 hours. The carbon (in mol) of liquid products collected in the same 2-hour period were determined using GC analysis. The sum of the carbon (in mol) of the liquid products and gaseous products is then compared to the carbon of the CO_2 fed to the reactor. A sample calculation of carbon balance is shown in **Table S1**. The experimental errors mainly include the analysis of the product by GC and the collection of the liquid product by the cold trap.

The conversion of CO₂ is defined as

$$X_{CO_2}(\%) = \frac{Carbon \, of \, CO_2 converted \, (mol)}{Carbon \, of \, initial \, CO_2 \, (mol)} \times 100$$
(1)

The selectivity of products can be calculated as

$$S_{CO}(\%) = \frac{Carbon \, of \, CO \, produced \, (mol \,)}{Carbon \, of \, CO_2 converted \, (mol \,)} \times 100$$
⁽²⁾

$$S_{CH_4}(\%) = \frac{Carbon \, of \, CH_4 \, produced \, (mol \,)}{Carbon \, of \, CO_2 converted \, (mol \,)} \times 100$$
(3)

The selectivity of one liquid product $(C_xH_yO_z)$ can be calculated as

$$S_{C_x H_y O_z}(\%) = \frac{Canbon \ of \ C_a H_b O_c \ (mol \)}{Carbon \ of \ CO_2 converted \ (mol \)} \times 100$$
(4)

The yield of $C_xH_yO_z$ can be calculated as

$$Y_{C_{x}H_{y}O_{z}}(\%) = \frac{Canbon \ of \ C_{x}H_{y}O_{z} \ (mol \)}{Carbon \ of \ initial \ CO_{2} \ (mol \)} \times 100$$
(5)

The space-time yield of ethanol (EtOH) can be calculated as

$$STY_{EtOH}(g_{EtOH} h^{-1} g_{cat.}^{-1}) = \frac{Ethanol \ production \ (g)}{Reaction \ time \ (h) \ \times \ amount \ of \ catalyst \ (g)}$$

(6)

The energy efficiency for CO₂ conversion can be calculated as

$$EE_{CO2}(mmol \, kJ^{-1}) = \frac{CO_2 \text{ consumed (mmol)}}{Power(kJ)}$$
(7)

The volume power density can be calculated as

$$VPD(W cm^{-3}) = \frac{Output Power(W)}{Discharge zone volume(cm^{3})}$$
(8)

The volume space velocity can be calculated as

$$SV(min^{-1}) = \frac{The \ volumetric \ flow \ rate \ of \ the \ reactants \ (cm^3 \ min^{-1})}{The \ volume \ of \ the \ reactor \ (cm^3)} \tag{9}$$

The carbon balance can be calculated as

$$C_{B}(\%) = \frac{Canbon \ of \ unreacted \ CO_{2} \ and \ production \ (mol)}{Carbon \ of \ initial \ CO_{2} \ (mol)} \times 100$$
(10)

Table S1. Carbon balance data of Cu(I)-HKUST-17.5 applied in plasma-assisted CO₂ hydrogenation

Input carbon (mmol)	Output carbon			
	Gaseous phase (mmol)		Liquid phase (mmol)	
40.0	Unreacted CO ₂	23.5	Produced MeOH*	2.02
	Produced CH ₄	0.54	Produced EtOH*	9.33
	Produced CO	2.85	Produced IPA*	0.41

Carbon Balance (%) = Output carbon/ Input carbon \times 100 = 96.6%

* MeOH, EtOH and IPA are abbreviations for methanol, ethanol and isopropanol, respectively.

SECTION S2 SUPPLEMENTARY FIGURES

Figure S1. Optical microscope image of HKUST-1 and Cu(I)-HKUST-n

Figure S2. (a) N_2 adsorption-desorption isotherms and (b) CO_2 heat of adsorption of

HKUST-1 and Cu(I)-HKUST-n

Figure S3. EDS mappings of C, O and Cu elements of Cu(I)-HKUST-17.5.

Figure S4. TG (a) and DTG (b) curve of HKUST-1 and Cu(I)-HKUST-n

Figure S5. Output voltage and discharge current at different frequencies

Figure S6. DRIFTS spectra of CO₂ and CO adsorption on Cu(I)-HKUST-17.5

Figure S7. CO2 adsorption-desorption isotherms of HKUST-1 and Cu(I)-HKUST-n

Figure S8. (a) CO₂ conversion and (b) selectivity of NTP-assisted CO₂ hydrogenation over CuO and Cu₂O catalyst. Reaction condition: 35° C, atmospheric pressure, a volume space velocity of 3.53 min⁻¹, a H₂/CO₂ flow ratio of 3:1, an input voltage of 30 V and reaction time of 2 hours. The amounts of CuO and Cu₂O were determined based on the molar amounts of copper ions on HKUST-1, which were 18.3 and 16.5 mg, respectively. For maintaining the same packing volume, CuO and Cu₂O were mixed with 6 µm glass beads, respectively.

Table S2 The CO₂ conversion, the selectivity of gaseous products and liquid products for NTP-assisted CO₂ hydrogenation over different catalysts. Reaction condition: 35° C, atmospheric pressure, a volume space velocity of 3.53 min⁻¹, a H₂/CO₂ flow ratio of 3:1, an input voltage of 30 V and reaction time of 2 hours.

	X _{CO2} (%)	$\mathbf{S}_{\mathbf{Gaseous products}}$ (%)	SLiquid products (%)
Plasma Only	11.9	93.3	6.10
HKUST-1	32.3	69.8	30.2
Zeolite-A	27.7	89.4	10.6
Cu(II)@zeolite-A	30.2	81.3	18.7