Supporting Information of

Tungsten dichalcogenide WS_{2x}Se_{2-2x} films *via* single source precursor lowpressure CVD and their (thermo-)electric properties

V. Sethi,^a D. Runacres,^b V. Greenacre,^b L. Shao,^b A. L. Hector,^b W. Levason,^b C. H. de Groot,^a G. Reid^{b*} and R. Huang^{a*}

^aSchool of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK. ^bSchool of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.

Figure S1: IR spectrum of [WSCl₄(SⁿBu₂)] (1) (Nujol / cm⁻¹)

Figure S2: Raman spectrum for [WSCl₄(SⁿBu₂)] (1) (cm⁻¹).

Figure S3: ¹H NMR spectrum of [WSCl₄(SⁿBu₂)] (1) in CDCl₃.

Figure S4: IR spectrum of [WSCl₄(SeⁿBu₂)] (2) (Nujol / cm⁻¹).

Figure S5: Raman spectrum for [WSCl₄(SeⁿBu₂)] (2) (cm⁻¹).

Figure S6: ¹H NMR spectrum of [WSCl₄(SeⁿBu₂)] (2) in CD₂Cl₂.

Figure S7: 77 Se{ 1 H} NMR spectrum of [WSCl₄(Se^{*n*}Bu₂)] (2) in CD₂Cl₂.

450 400 350 300 250 200 150 100 50 Chemical Shift (ppm)

Figure S8: $^{77}Se\{^{1}H\}$ NMR spectrum of [WSCl₄(SeⁿBu₂)] (2) in CD₂Cl₂ at –90 °C.

Figure S9: IR spectrum of [WSeCl₄(SⁿBu₂)] (3) (CH₂Cl₂ solution in Nujol / cm⁻¹).

Figure S10: Raman spectrum for [WSeCl₄(SⁿBu₂)] (3) (cm⁻¹).

Figure S11: ¹H NMR spectrum of [WSeCl₄(SⁿBu₂)] (3) in CD₂Cl₂.

Figure S12: Visual depiction of a typical Hall measurement, with a current applied between contact 1 and 4 (I₁₄). A magnetic field ($\vec{B} = 0.5T$) is applied orthogonal to the sensing plane, with the visual depiction showing the case for a magnetic field out of the page. The Lorentz force (F_B) defects charge carrier to one side of the sample which subsequently induces a electric field which exerts a force (F_E)which induces a Hall voltage which is measured between contacts 2 and 3. This is repeated in four contact configurations, (i.e. I₁₄, I₄₁, I₂₃, I₃₂).

Figure S13: Cross-sectional SEM images of WS_{2x}Se_{2-2x} films produced *via* low-pressure CVD, where a-d represents films produced from SSPs (1)-(4), respectively.

Figure S14: SEM image and associated EDX element mapping of film **A** (a-c); film **B** (d-g); film **C** (h-k); and film **D** (l-n).

Figure S15: Survey scans over the range 0 -700 eV for all as-deposited WS_{2x}Se_{2-2x} films deposited from precursors (1)-(4), with the atomic orbitals labelled. The remaining peaks are related to Auger electron detection.