1 Supplementary material for

2	Synergistic effects of Au and PdO _x on the solar-assisted catalytic ozonation of
3	VOCs
4	
5	
6	Junxian Gao ^a , Zhizhang Shen ^a , Yuming Dong ^d , Zhenyu Wang ^a , Jinze Lyu ^{a, c*} , Ji Li ^{a, c, e*} , Han-
7	Qing Yu ^b *
8	^a School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
9	^b Department of Environment Science and Engineering, University of Science and Technology of
10	China, Hefei, Anhui, 230026, China
11	^c Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122,
12	China
13	^d School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
14	^e Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center,
15	Suzhou, Jiangsu, 215009, China

1 Catalytic experiments

The system was composed of a gas-distribution module, an ozone generator (COM-AD-01, 2 Anseros, Germany), a reactor, a xenon-lamp light source (Microsolar 300, Perfect Light, China), an 3 ultra-fine thermocouple, and a gas chromatography (GC) system (9790II, Fuli instrument, China). 4 High-purity air (composed of 79% N2 and 21% O2) was used as carrier gas. The total gas flow rate 5 was 510 mL/min. The concentrations of toluene, ozone, and H₂O were 140 mg/m³, 1000 mg/m³, and 6 12 580.9 mg/m³ (relative humidity at 25 °C was 50%). 0.1 g of the catalyst was uniformly coated onto 7 a 3.5 cm-diameter quartz plate, which was placed in the reactor. The gas hourly space velocity was 8 6000 h⁻¹. Full-spectrum light consists of IR, visible, and UV lights. The full-spectrum light intensity 9 was 450 mW/cm^2 . 10

11 Toluene removal efficiency (X_{tol}), toluene mineralization efficiency (M), ozone removal efficiency 12 (X_{O3}), and CO₂ selectivity were calculated using Eq. (1)–Eq. (4), respectively.

$$X_{tol} = \frac{C_{tol, in} - C_{tol, out}}{C_{tol, in}} \times 100\%$$
(1)

14

$$M = \frac{C_{CO_2,out} - C_{CO_2,in}}{C_{tol,in} \times 3.35} \times 100\%$$
(2)

$$X_{O_3} = \frac{C_{O_3, in} - C_{O_3, out}}{C_{O_3, in}} \times 100\%$$
(3)

15

16

$$CO_{2} \text{ selectivity} = \frac{C_{CO_{2},out} - C_{CO_{2},in}}{(C_{tol,in} - C_{tol,out}) \times 3.35} \times 100\%$$
(4)

17 where X_{tol} (%) and X_{O3} (%) represent the removal efficiency of toluene and ozone, respectively. *M* 18 represent the mineralization efficiency of toluene. $C_{tol, in}$ (mg/m³), $C_{CO2, in}$ (mg/m³), and $C_{O3, in}$ (mg/m³) 19 represent the concentrations of toluene, carbon dioxide, and ozone at the reactor inlet, respectively. 20 $C_{tol, out}$ (mg/m³), $C_{CO2, out}$ (mg/m³), and $C_{O3, out}$ (mg/m³) represent the concentrations of toluene, carbon 1 dioxide, and ozone at the reactor outlet, respectively.

2 The steady-state reaction rate $(mg/(m^3 \cdot min))$ was calculated using Eq. (5).

$$r_{tol} = \frac{C_{tol, in} X_{tol} v}{V}$$
(5)

4 where v and V are the total flow rate (510 cm³/min) and reaction area volume (5.1 cm³), respectively.

5 The synergy factor of light and ozone was calculated using Eq. (6).

$$Synergy \ factor = \frac{r_{tol,PACO}}{r_{tol,O_3} + r_{tol,PCO}} \tag{6}$$

7 where $r_{tol,PACO}$, $r_{tol,O3}$, and $r_{tol,PCO}$ were the steady-state reaction rate of toluene in the presence of 8 ozone and light, in the presence of ozone only, and in the presence of light only, respectively.

9

Fig. S1. Schematic of catalytic system

13

12

14 Characterizations of catalysts

The Ce content of the prepared samples was analyzed with an inductively coupled plasma optical emission spectrometer (ICP-OES; Agilent 720ES, USA). The Au and Pd content of the prepared samples was analyzed with an inductively coupled plasma mass spectrometer (ICP-MS; Agilent 1 ICPMS 7700, USA). X-ray diffraction (XRD) was measured by a X'Pert'3 Powder (Panalytical Co., 2 Holland) with Cu K α radiation. The surface element and electronic-structure of the prepared samples 3 were analyzed with an X-ray photoelectron spectroscopy (XPS) system (K-Alpha, Thermo Scientific 4 Inc., USA) with Al-K α (hv=1486.6 eV) as X-ray source. The XPS curves were calibrated using the 5 adventitious carbon signal at 284.8 eV. UV-visible diffuse reflectance spectra were recorded by a UV-6 visible spectrophotometer (UV-1800, SPC Co., China) with BaSO₄ as the reference sample. The 7 specific surface area of the samples was measured using a surface area analyzer (MicrotracBEL 8 Belsorp-Max Co., USA).

9

10 Photothermal-conversion efficiency measurement

0.1 g of catalyst was uniformly coated on the quartz plate, and the quartz plate was placed in the reactor. The prepared sample on the quartz plate was heated by illumination. When the temperature of the prepared sample was stable, the maximum temperature was recorded, and the light source was turned off. The temperature of the prepared sample was measured by an ultrafine thermocouple. The light power at the sample surface was measured by an optical power meter.

Photothermal conversion efficiency of absorption light and photothermal conversion efficiency
of incident light were calculated using Eq. (7) and Eq. (8), respectively.

18 Photothermal conversion efficiency of absorbed light (%):
19 Photothermal conversion efficiency of incident light (%):

$$\eta_a = \frac{Q}{I}$$
(7)
 $\eta_i = \frac{Q}{I_{abs}}$
(8)

20 where Q(W), I(W), and $I_{abs}(W)$ are the total heat of the prepared sample from absorbed light, incident

21 light power, and absorbed light power, respectively.

1 When the temperature of the prepared sample reached the maximum, the total generated heat was 2 equal to the total heat loss. Thus, *Q* was calculated using Eq. (9).

3
$$Q = Q_{\text{loss}} = Q_{\text{cond}} + Q_{\text{conv}} + Q_{\text{rad}}$$
(9)

4 where Q_{loss} (W), Q_{cond} (W), Q_{conv} (W), and Q_{rad} (W) are the total heat loss, heat conduction loss, heat 5 convection loss, and heat radiation loss, respectively. Considering that the contact area between the 6 quartz plate and the base in the test reactor was small, the conduction heat loss was negligible. The 7 heat convection loss was calculated using Eq. (10).

8
$$Q_{\rm conv} = hA(T_{\rm max} - T_{\rm surr})$$
 (10)

9 where h (W/[m²·°C]), A (m²), T_{max} (°C), and T_{surr} (°C) are the heat transfer coefficient, heat dissipation 10 area, maximum temperature of the prepared samples under illumination, and ambient temperature, 11 respectively. h was calculated using Eq. (11).

$$h = 2.51C(\frac{T_{\text{max}} - T_{\text{surr}}}{L})^{0.25}$$
(11)

13 where C and L are the parameters determined on the basis of the shape of the quartz plate. The heat 14 radiation loss was calculated using Eq. (12).

15
$$Q_{\rm rad} = A\sigma\varepsilon (T_{\rm max}^{4} - T_{\rm surr}^{4})$$
(12)

16 where σ is the Stefan–Boltzmann constant, 5.67×10^{-8} W/(m²·K⁴). ε is the radiation factor of the 17 prepared samples.

18

12

Fig. S2. TEM images of CeO₂ (A), Au-CeO₂ (C), and PdO₂-CeO₂ (E). HRTEM images of CeO₂ (B),
Au-CeO₂ (D), and PdO₂-CeO₂ (F).

4

1

Fig. S3. (A) Removal efficiencies of toluene for PdO_x -Au-CeO₂ and PdO_2 -CeO₂/Au-CeO₂ in the

3 presence of ozone and full-spectrum light; (B) Removal efficiencies of toluene for the prepared

4 samples over time in the presence of ozone and full-spectrum light.

Fig. S4. Removal efficiency of ozone (A) and the correlation between decomposed ozone and
 removed toluene (B) with thermostatic control in darkness or under full-spectrum irradiation for the
 prepared samples.

1

1

3 Fig. S5. Removal efficiency of toluene (A), mineralization efficiency of toluene (B), and removal

4 efficiency of ozone (C) with thermostatic control in darkness or under under light irradiation (> 510

nm) for the prepared samples.

5

Catalyst	VOC	C _{VOC} ^a (mg/m ³)	C _{ozone} ^b (mg/m ³)	Light source	C _{Water} c (mg/m ³)	Hourly space velocity(/h)	r _{voc} ^d (mg/(m ³ ·mi n))	Synergistic factor between light and ozone	References
TiO ₂	Styrene	46.5	47.1	310-380 nm	12580.9	60	33.3	-	[14]
TiO ₂	Ethylbenz ene	346	16500	254 nm	10064.7	69.2	343.2	2.51	[15]
ZnO-GAC	Benzene	375	3572.1	365 nm	20479.1	21.6	107.8	1.21	[27]
TiO ₂	Toluene	82.1	150	UVA	8200	150	205.3	-	[28]
TiO ₂	n-decane	953.3	816	254 nm	10064.7	1800	5622.0	2.1	[29]
Cu ₂ O- CuO/TiFN	n-hexane	1346.6	342.9	254 nm+185 nm	11322.8	176.8	3015.7	-	[30]
TiO ₂	Trichloro ethylene	502.9	750.1	254 nm	20710	-	-	0.51	
TiO ₂	Trichloro ethylene	502.9	750.1	365 nm	20710	-	-	0.91	[31]
TiO ₂	Toluene	61.6	64.29	254 nm	8050	125	89.4	0.77	[19]
TiO ₂	Toluene	61.6	64.29	365 nm	8050	125	44.7	2.4	
TiO2/Zn-ZSM- 5	acetaldeh yde	528.4	280.7	254 nm	8200	-	-	0.83	
TiO2/Cu-ZSM- 5	acetaldeh yde	528.4	280.7	254 nm	8200	-	-	0.97	[32]
TiO2/Mn- ZSM-5	acetaldeh yde	528.4	280.7	254 nm	8200	-	-	1.08	
TiO ₂	1,2- dichlorob enzene	4086.6	235.7	365 nm	-	84.5	4431.6	-	[33]
TiO ₂	Toluene	184.8	792.9	254 nm	10000	26.7	78.9	1	[34]
PdO _x -LaFeO ₃	Toluene	135.7	1071.4	Xenon light, 447 mW/cm ²	12580.9	6000	7178.5	3.82	Our previous work
PdO _x -Au-CeO ₂	Toluene	140	1000	Xenon light, 447 mW/cm ²	12580.9	6000	7864.3	8.94	This work

Table S1 Catalytic performance of catalysts and corresponding experimental conditions from other works

3 a. C_{VOC} : Initial concertration of VOC.

4 b. C_{ozone} : Initial concertration of ozone.

5 c. C_{water} : Initial concertration of water.

6 d. r_{VOC} : The removal amount of VOC per unit volume of catalyst per unit time.