Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Lanthanum-induced synergetic carrier doping of heterojunction to achieve high efficiency Kesterite solar cells

Kang Yin a,c, Licheng Lou a,c, Jinlin Wang a,c, Xiao Xu a,c, Jiazheng Zhou a,c, Jiangjian Shi a*,

Huijue Wu^a, Dongmei Li^{a,c,d}, Yanhong Luo^{a,c,d*}, Qingbo Meng^{a,b,c,d*}

^a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of

Sciences, Beijing 100190, P. R. China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of

Sciences, Beijing 100049, P. R. China

^c School of Physical Sciences University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^d Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China

*Corresponding author.

E-mail: shijj@iphy.ac.cn E-mail: yhluo@iphy.ac.cn E-mail: qbmeng@iphy.ac.cn

Fig. S1. AFM images of Ctrl and La-5 films.

The grain sizes of the Ctrl and La-5 films were mainly 0.6-1.2 microns, and the average sizes were 0.94 and 0.92 microns respectively. This indicates that the grain size does not change significantly after La doping.

Fig. S3. Cross-sectional-SEM images of Ctrl and La-5 films.

Fig. S4. XPS spectra of La in La-5 film (a) and La(OH)₃ powder (b). The peaks at 834 $(3d_{5/2} \text{ cf}^0)$ and 852 eV $(3d_{3/2} \text{ cf}^0)$ are attributed to the corresponding two spin-orbits of $3d_{5/2}$ and $3d_{3/2}$, Further, the peaks at 837 $(3d_{5/2} \text{ cf}^1\text{L})$ and 856 eV $(3d_{3/2} \text{ cf}^1\text{L})$ can be attributed to the satellite peaks of $3d_{5/2}$ and $3d_{3/2}$ spin-orbits, respectively. According to reported results, for La(OH)_x the ratio of intensity of XPS peaks of La 3d and their satellite peaks f^0/f^1 is greater than 1, but for La₂S₃ the ratio f^0/f^1 is less than 1.¹⁻⁴ It could be clearly seen that the f^0/f^1 of La(OH)x is greater than 1 in Fig. S4b. However, for La-5 film, the f^0/f^1 is slightly less than 1. This indicates that part of La possibly diffused from La(OH)x layer to CdS layer and substitute the Cd position in the CdS to form La-S bond.

Fig. S5. XRD pattern and UV-Vis absorption spectrum of La(OH)₃ powder obtained from mixing LaCl₃ and NaOH solutions.

Fig. S6. XRD patterns of control, La-2, La-5 and La-10 films.

Fig. S7. Raman patterns of control, La-2, La-5 and La-10 films.

Fig. S8. ToF-SIMS spectra of La-5 devices.

Fig. S9. f vs -f (dC/f) plot from C-f-T spectra of Ctrl and La-5 devices.

Fig. S10. C-f-T spectra of Ctrl and La-5 device and Arrhenius plots for control and La-5 samples obtained from thermal admittance spectra.

Fig. S11. C-V curves and Mott-Schottky plot Ctrl and La-5 films.

Fig S12. C-V profile of Ctrl and La-5 cells at 100 kHz.

Table S1. Material parameters of different layers for SCAPS-1D simulation.⁵⁻⁷

Parameters	ACZTSSe	CdS	CZTSSe/CdS interface	ZnO
Thickness (μm)	1.2	0.05		0.025
Bandgap (eV)	1.1	2.45		3.4
Electron affinity (eV)	4.1	3.7		4.15
Dielectric permittivity (relative)	7	10		10
CB effective DOS (1/cm ³)	2.2*10 ¹⁸	1*10 ¹⁹		1*10 ²¹
VB effective DOS (1/cm ³)	1.8*10 ¹⁹	1.5*10 ¹⁹		9*10 ¹⁸
Electron thermal velocity (cm/s)	1*10 ⁷	1*10 ⁷		1*10 ⁷

Hole thermal velocity (cm/s)	1*10 ⁷	1*10 ⁷		1*10 ⁷
Electron mobility (cm ² /Vs)	50	50		5*10-4
Holt mobility (cm²/Vs)	1	20		10
Shallow donor density ND (1/cm ³)	1	5*10 ¹⁷ for Ctrl 2*10 ¹⁸ for La-5		1*10 ¹⁹
Shallow acceptor density ND (1/cm ³)	3*10 ¹⁵ for Ctrl 1*10 ¹⁶ for La-5	1		1
Defects	Single acceptor 0.2 eV above E_V 6*10 ¹⁵ cm ⁻² Single donor 0.3 eV blow E_C 1.5*10 ¹⁵ cm ⁻²		Single acceptor 0.3 eV above E_V 9*10 ¹¹ cm ⁻² for Ctrl 2*0 ¹¹ cm ⁻² for La-5	Single donor 0.6 eV above E_V 1*10 ¹⁴ cm ⁻²

Parameters	MoSe2	Back contact	Front contact	ITO
Thickness (µm)	0.6			0.2
Bandgap (eV)	1.16			3.8
Electron affinity (eV)	4.3			
Dielectric permittivity (relative)	9			10
CB effective DOS (1/cm ³)	2.2*10 ¹⁸			4*10 ¹⁸
VB effective DOS (1/cm ³)	1.8*10 ¹⁹			9*10 ¹⁸
Electron thermal velocity (cm/s)	1*10 ⁷			1*10 ⁷
Hole thermal velocity (cm/s)	1*10 ⁷			1*10 ⁷
Electron mobility (cm²/Vs)	50			50
Holt mobility (cm²/Vs)	20			20
Shallow donor density ND (1/cm ³)	1			1*10 ²¹
Shallow acceptor density ND (1/cm ³)	3*10 ¹⁶			1
Thermionic emission / surface recombination velocity (cm/s)		Electrons 10 ⁵ Holes 10 ⁷	Electrons 10 ⁷ Holes 10 ⁵	Single donor 0.6 eV above E_V 1*10 ¹⁴ cm ⁻²

Fig. S13. Simulated *J-V* curves by SCPAS with the parameters in table S1.

					报	各编号:	22Q3-00
检测结果/说明: Results of Test and additional explanation			300		10	Coport No.	13010
1 标准测试条件 STC Sta	andard Te	st Condi	tion (STC).			
	总辐照	度 Total	Irradiance	: 1000	W/m^2		
	被测电池	也温度 Te	emperature	e: 25.0	°C		
光	谱分布的	Spectral I	Distributio	n: AM	5G		
2 STC条件下测量数据							
Measurement Data und	ler STC						
正扫 Forward Scan							
测试次数 Test Times	I _{sc} (mA)	Voc (V)	IMPP (mA)	VMPP (V)	P _{MPP} (mW)	FF (%)	n (%)
1	10.12	0.5494	9.017	0.4281	3.860	69.43	13.63
2	10.11	0.5424	8.974	0.4236	3.801	69.31	13.42
3	10.10	0.5419	8.967	0.4200	3.766	68.81	13.30
平均值 Average Value	10.11	0.5446	8.986	0.4239	3.809	69.18	13.45
反扫 Reverse Scan		News 1	Carl I	-	CAR TO P		
测试次数 Test Times	Isc (mA)	$V_{\rm oc}({ m V})$	IMPP (mA)	$V_{\rm MPP}(V)$	P _{MPP} (mW)	FF (%)	n (%)
1	10.12	0.5480	8.900	0.4320	3.845	69.33	13.58
2	10.12	0.5473	8.904	0.4308	3.836	69.26	13.55
3	10.11	0.5471	8.899	0.4280	3.809	68.86	13.45
平均值 Average Value	10.12	0.5475	8.901	0.4303	3.830	69.15	13.53
失配因子 Mismatch fac	ctor: 1.01	0					in mail
3 STC 卜电流-电压特性	曲线和功	力率-电压	特性曲线				
I-V & P-V Characteris	tic Curve	s under S	TC				
12.0		The second			March (11	5.0
10.0			ANTRA C		1		4.5
9.0 - 8.0 -	- Forward	Scan	-	/	1		- 3.5
(V 7.0 E 60	Reverse	Scan	/		11	1	- 3.0 (Mu
5.0 -		/				111	2.5 J) Jomo
4.0	/						- 1.5
2.0				NPVM R	た 代 デ 业 計 量 測 試 中 National PV Industry Torrison	o II	- 1.0
1.0					invalent and reading C		0.5
0.0 0.1		0.2	0.3 Voltage (V)	0	.4	0.5	0.0
1221	1 STC TH	1流_由压约	导性曲线和	功率-由日	特性曲线		

Fig. S14. Certified test report of the champion CZTSSe solar cell by National PV Industry

Measurement and Testing Center (NPVM).

Figure S15. Temperature- dependence Series resistance (Inset: $\ln(R_ST)$ vs 1000/T plot) variation of control and La-5 cells. The relative lower carrier barrier potential Φ_B of La-5 cell is consistent of the proper energy band alignment simulated by SCAPS-1D shown in figure 4d.

- 1. M. F. Sunding, K. Hadidi, S. Diplas, O. M. Løvvik, T. E. Norby and A. E. Gunnæs, *Journal of Electron Spectroscopy and Related Phenomena*, 2011, **184**, 399-409.
- 2. V. J. Mane, S. B. Kale, S. B. Ubale, V. C. Lokhande, U. M. Patil and C. D. Lokhande, *Journal of Solid State Electrochemistry*, 2021, **25**, 1775-1788.
- 3. B. Butkus, M. Havel, A. Kostogiannes, A. Howe, M. Kang, R. Gaume, K. A. Richardson and P. Banerjee, *Surface Science Spectra*, 2023, **30**.
- 4. S. R. Sanivarapu, J. B. Lawrence and G. Sreedhar, *ACS Omega*, 2018, **3**, 6267-6278.
- 5. J. Li, J. Huang, Y. Huang, H. Tampo, T. Sakurai, C. Chen, K. Sun, C. Yan, X. Cui, Y. Mai and X. Hao, *Solar RRL*, 2021, **5**, 2100418.
- 6. A. Kumar and A. D. Thakur, *Current Applied Physics*, 2019, **19**, 1111-1119.
- 7. S. Tripathi, Sadanand, P. Lohia and D. K. Dwivedi, *Sol Energy*, 2020, **204**, 748-760.