Synergistic effects of Fe-substitutional-doping and surface closecontact Fe_2O_3/CeO_2 heterojunction in Fe/CeO_2 for enhanced CH_4 photocatalytic conversion

Hailong Tang^{*a*}, Meiling Wang^{*a*,*}, Yongqing Ma^{*a*, *b*}, Xiao Sun^{*c*}, Min Wang^{*d*,*} and

Ganhong Zheng^a

^a School of Materials Science and Engineering, Anhui University, Hefei, 230601, China

^b Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China

^c Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.

^d School of Physics and optoelectronics engineering, Anhui University, Hefei, 230601, China

*To whom correspondence should be addressed.

Tel: (86) 13856996630, E-mail: mlw@ahu.edu.cn, ahwm@ahu.edu.cn

Key words: CeO_2 , Fe-substitutional-doping, Fe_2O_3/CeO_2 heterojunction, photocatalysis, CH_4 conversion

Fig. S1 XRD spectra of 1:3 Fe/CeO₂ calculated under varied a) temperature and b)

time.

Fig. S2 a) SEM images of CeO₂-900/6 and b) 1:3 Fe/CeO₂-900/6 before picking.

Fig. S3 TEM, STEM and EDS mapping images of 1:3 Fe/CeO₂-900/6 a-f) before and g-l) after pickling respectively.

Fig.S4 XPS survey spectrum of 1:3 Fe/CeO₂-900/6.

Fig. S5 a, b) High-resolution Ce 3d and O 1s XPS spectra of 1:3 Fe/CeO₂-900/6. c, d)
Deconvoluted Ce 3d and O 1s XPS spectra of 1:3 Fe/CeO₂-900/6 and CeO₂-900/6
respectively. e, f) Ce M-edge and O K-edge XANES spectra of 1:3 Fe/CeO₂-900/6.

Fig. S6 Model structures of CeO_2 and Fe-substituted CeO_2 with O_v .

Fig. S7 H₂-TPR profiles of varied catalysts.

Fig. S8 Product yields over catalysts with prolonged calcination time.

Fig. S9 XRD spectra of CeO₂, Fe₂O₃ and 1:3 Fe/CeO₂-900/6 pickled with pure hydrochloric acid solution for 24 h respectively.

Fig. S10 Yields of C1 products using different light intensity.

Table S1 Products yields of 1:3 Fe/CeO₂-900/6 with HCl pickling time of 24 h.

Products	CH ₃ OH	НСНО	НСООН	CH ₃ OOH	CO ₂	Total
Yields	0.66007	4.21538	0.74198	1.42045	0.01496	7.05284
(mmol						
g _{cat.} -1 h-						
1)						

Fig. S11 Cycling tests of CH_4 conversion over 1:3 Fe/CeO₂-900/6.

Fig. S12 a, b) TEM images of 1:3 Fe/CeO₂-900/6 before and after photocatalytic experiment, and c, d) deconvoluted high-resolution Ce 3d and O1s XPS spectra of 1:3 Fe/CeO_2 -900/6 after illumination.

Fig. S13 The N₂ adsorption–desorption isotherms and corresponding pore size distribution curves for a, b) CeO₂, c, d) CeO₂-900/6, e, f) 1:3 Fe/CeO₂ and g, h) 1:3 Fe/CeO₂-900/6 respectively.

Models	Hirshfeld Charge		
	Ce	О	Fe
CeO ₂	0.639	-0.349	/
*	0.637	-0.248	0.453

Table S2 Calculated Hirshfeld charge for the CeO_2 and * slabs respectively.

Fig. S14 a) Optimized structure and b) DCD maps of the Fe-interstitial-doped CeO_2 slab, plotted from -0.05 (blue) to 0.15 e Å⁻³ (red).

Fig. S15 a) UV-vis DRS spectra and b) bandgaps determined using $[Ah\gamma]^{1/2}$ vs h γ plots for varied CeO₂, c, d) Mott-Schottky plot of CeO₂-900/6 and Fe₂O₃-900/6 at the

Fig. S16 High-resolution Fe 2p XPS spectra of 1:3 Fe/CeO₂-900/6 with and without illumination respectively.

Fig. S17 ESR spectra of the reaction system.

Fig. S18 a) The photocurrent curves, b) EIS spectra and c) PL spectra of 1:3 Fe/CeO₂-

900/6 and CeO₂-900/6.

Fig. S19 DFT energy profile for CH_4 adsorption and activation to $\mathbf{O}CH_3$ over Fe_2O_3 cluster/CeO₂ respectively.

Fig. S20 Proposed reaction routes and DFT energy profiles for CH₄ photooxidation to

C1 products over CeO₂.

Fig. S21 DCD maps of CeO₂+CH₄, CeO₂+CH₃, *CH₄ and *CH₃ respectively. The

isosurface value is 0.008 e Å $^{-3}$.

Fig. S22 Optimized structures of *CH₃+OH_{Fe} and *CH₃+OOH_{Ce} respectively.

Part S1 Details of the instruments and equipment used for catalysts characterization.

Morphologies and crystal structures of the catalysts were characterized using scanning

electron microscopy (SEM, S-4800, Hitachi, Japan), transmission electron microscopy (TEM, JEOL JEM-2100, Japan) and powder X-ray diffraction (XRD) spectra (Rigaku Industrial Corporation, Osaka, Japan). Fourier transform infrared (FTIR) spectra and UV–vis diffuse reflectance spectra (DRS) were recorded on the Vertex 80/Hyperion 2000 spectrometer (Bruker, Germany) and UV-vis absorption spectrometer (UV-vis DRS, U-4100, Shimadazu, Japan) respectively. Elemental surface chemical states and valence-band spectra were characterized using X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Scientific Inc., USA). H nuclear magnetic resonance (HNMR) spectra were measured on a JNM-ECZ400S NMR spectrometer (Japan). Specific surface areas and pore sizes were obtained via an the Quantachrome Instrument (USA). Electron paramagnetic resonance (EPR) spectra were measured on a EPR spectrometer (EMX plus 10/12, Bruker, Germany).

Part S2 DFT computational details.

All the density functional theory (DFT) calculations were carried out using the Dmol³ code of Materials Studio 2019.¹ The exchange-correlation potential was calculated by the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional.¹ The interactions between electronics and ions were described using the DFT semi-core pseudo potentials (DSPPs) core treatment, which replaces core electrons by a single effective potential and introduces some degree of relativistic correction into the core. The geometry optimization convergences tolerance was set to $0.002 \text{ Ha} \cdot \text{Å}^{-1}$ (1 Ha = 27.21 eV), and the total energy convergences was set to 10^{-6} Ha. The Brillouin zone was sampled with 2×2×1 Monkhorst-Pack k-point mesh, and a smearing of 0.005 Ha was applied to speed up electronic convergence. The 2-layer 2×2 supercell of CeO₂ (1 1 1) slab with 96 atoms (six atomic layers) was used to build the calculation models. Spin polarization was also applied to our calculations, and the real space cutoff radius was maintained as 5.0 Å.^{2, 3} The Ce and O atoms in the bottom three layers were fixed, and the other atoms were fully relaxed. The thickness of the vacuum layer in multi-layer calculation models was set to 20 Å to avoid the unwanted interaction between the slab and its period images.

References

1 Y. Jiang, C. Lai, Q. Li, W. Gan, L. Yang, Z. Yang, R. Lin, X. Wang, X. Zhu, The poisoning effect of KCl and K₂O on CeO₂-TiO₂ catalyst for selective catalytic reduction of NO with NH₃, Fuel. 280 (2020) 118638.

2 X. Song, P. Ning, C. Wang, K. Li, L. Tang, X. Sun, Catalytic hydrolysis of COS over CeO₂ (110) surface: A density functional theory study, Appl. Surf. Sci. 414 (2017) 345-352.

3 H. Tang, T. Ju, Y. Dai, M. Wang, Y. Ma, M. Wang, G. Zheng, Ultrahigh efficiency CH₄ photocatalytic conversion to C1 liquid products over cheap and vacancy-rich CeO₂ at 30 °C, J. Mater. Chem. A. 10 (2022) 18978-18988.