Supplementary information

Activated Nanolithia as an Effective Prelithiation Additive for Lithium-Ion Batteries

Jingxi Zhang,^a Xi Chen,^a Gang Shao,^b Hailong Wang,^b Yanhao Dong^{*a} and Chang-An Wang^{*a}

 ^aState Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
^bSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001,

Henan, China

Figure. 1 SEM images of commercial Li₂O powder (a) and commercial LiCoO₂ powder (b).

Figure. 2 Particle size distribution of LiCoO₂, Li₂O and Co-Li₂O.

Figure. 3 (a) TEM image of Co-Li₂O. (b, c) EDS mapping of Co-Li₂O. Scale bar: 1 µm.

Figure. 4 XRD peaks broadening of Co-Li₂O.

The crystallite sizes can be calculated by Sherrer's equation:

$$D_{hkl} = \frac{0.89\lambda}{\beta_{hkl}\cos\theta}$$

Where D_{hkl} is the thickness of the primary particle in [hkl] direction (representing the diameter of the primary particle), λ is the wavelength of the incident X-ray, β_{hkl} is the full width at half maximum (FWHM) and θ is the diffraction angle of (hkl). The results are listed in Supplementary Table 1.

Peak	Instrumental FWHM (°)	FWHM (°)	2Theta (°)	Crystallite size (nm)
Li ₂ O (111)	0.06309	0.78331	33.52049	11
LiCoO ₂ (104)	0.06988	1.53069	45.0571	6

Table. 1 Stimulated peaks information and calculated crystallite sizes.

Figure. 5 Initial charge-discharge voltage profile of (a) micro-Li₂O, (b) nano-Li₂O, (c) micro-LiCoO₂ and (d) Hand-milled Li₂O-LiCoO₂ composite.

<i>x</i> (Li ₂ O)	Theoretical irreversible capacity (mAh g ⁻¹)	Experimental irreversible capacity (mAh g ⁻¹)	Extracted Li ratio (%)
1 (pure Li ₂ O)	1793.9	18.9	1
0.9	1614.5	806.5	50
0.8	1435.1	1001.5	70
0.7	1255.7	1211.9	97
0.6	1076.3	1110.1	103
0.5	897.0	937.5	105
0.4	717.6	701.7	98
0 (pure LiCoO ₂)	0	5.9	-

Table. 2 Calculation of extracted Li ratio in Li₂O.

The capacity from $LiCoO_2$ is assumed to be fully reversible, while the capacity from Li_2O is assumed to be fully irreversible. Thus the extracted Li ratio in Li_2O is calculated by

Extracted Li ratio = $\frac{\text{Experimental irreversible capacity}}{\text{Theoretical irreversible capacity}}$

Figure. 6 Schematic diagram of the origin of facile Li₂O decomposition kinetic.

Figure. 7 Schematic diagram of the origin of low extracted Li ratio when $x(Li_2O) > 0.7$.

Figure. 8 TEM image of charged Co-Li₂O. The dark dots are remained Li_{1-x}CoO₂ species, the particles around dark dots are conductive carbon black.

Figure. 9 Gas evolution rate and correspondent voltage profile of the Co-Li₂O electrode during charging. (a) O₂ and (b) CO₂.

Figure. 10 Initial galvanostatic charge-discharge profiles of Co-Li₂O using Li₂O and wasted LiCoO₂ as raw materials.

Figure. 11 ICE comparison of LiFePO₄, graphite and NCM811.

Figure. 12 (a) CV curves of LiFePO₄ electrode with 3.5% Co-Li₂O in baseline electrolyte. (b) CV curves of LiFePO₄ electrode with 3.5% Co-Li₂O in phosphites-containing electrolyte. The scanning rate is 0.2 mV·s⁻¹.

Figure .13 XPS of charged LiFePO₄ electrode with 3.5% Co-Li₂O and without additive in phosphites-containing electrolyte. Here the phosphites-containing electrolyte was abbreviated to PP22 for convenience.

Figure. 14 Cross-sectional SEM image of charged LiFePO₄ electrode with 3.5% Co-Li₂O.

Figure. 15 First cycle dQ/dV plots of Li || LiFePO₄ full cells with and without 3.5% Co-Li₂O.

Figure. 16 Electrochemical impedance spectra with and without additive. (a) After the first cycle. (b) After 10 cycle.

Figure. 17 Voltage profiles of $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ half cells with and without 3.5% Co- Li_2O . The current density is 50 mA· g_{NMC811}^{-1} .

Figure. 18 Initial charge-discharge profile of graphite.

Figure. 19 First cycle dQ/dV plots of graphite || LiFePO₄ full cells with and without 3.5% Co-Li₂O.