Electronic Supplementary Information

Impregnation of KOAc on $\mathrm{PdAu} / \mathbf{S i O}_{\mathbf{2}}$ causes Pd-acetate formation and metal restructuring

Hunter P. Jacobs, ${ }^{a,{ }^{f}}$ Welman C. Elias, ${ }^{a,{ }^{+}}$Kimberly N. Heck, ${ }^{a}$ David P. Dean, ${ }^{b}$ Justin J. Dodson, ${ }^{c}$ Wenqing Zhang, ${ }^{a}$ Jacob H. Arredondo, ${ }^{a}$ Christian J. Breckner, ${ }^{b}$ Kiheon Hong, ${ }^{d}$ Christopher R. Botello, ${ }^{a}$ Laiyuan Chen, ${ }^{c}$ Sean G. Mueller, ${ }^{c}$ Steven R. Alexander, ${ }^{c}$ Jeffrey T. Miller, ${ }^{b}$ and Michael S. Wong ${ }^{a, d, e, f *}$
${ }^{\text {an }}$ Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 6100 Main Street, Houston, Texas 77005, USA
${ }^{\mathrm{b}}$ Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, USA
${ }^{\mathrm{c}}$ Celanese Corporation, 9502 Bayport Blvd., Pasadena, TX 77507, USA
${ }^{\text {d}}$ Department of Civil and Environmental Engineering, Rice University, USA
${ }^{\text {e}}$ Department of Materials Science and NanoEngineering, Rice University, USA
${ }^{\mathrm{f}}$ Department of Chemistry, Rice University, USA
${ }^{\$}$ These authors contributed equally to the manuscript.
*Corresponding author: mswong@rice.edu

Figure S1. DRIFTS spectra in the $4000-3500 \mathrm{~cm}^{-1} v(\mathrm{OH})$ region of the $\mathrm{PdAu} / \mathrm{SiO}_{2}$ containing 0 , 5 , and $10 \mathrm{wt} \% \mathrm{~K}$ treated in (a) 0 , (b) 100 , and (c) $50 \mathrm{vol} \% \mathrm{AcOH}$ solutions showing negative $v(\mathrm{OH})$ peaks associated with conversion of isolated silanols to either silyl acetates or alkali silanolates. As-synthesized $\mathrm{PdAu} / \mathrm{SiO}_{2}$ was used as background for all samples.

(b)

Figure S2. Integrated intensities of $v(\mathrm{C}=\mathrm{O})$ and $v_{a s}(\mathrm{COO})$ peaks associated with various Pd acetates determined by deconvoluted DRIFTS spectra of the $\mathrm{PdAu} / \mathrm{SiO}_{2}$ treated in (a) 0 , (b) 100 , and (c) $50 \mathrm{vol} \% \mathrm{AcOH}$ solutions versus $\mathrm{K} \mathrm{wt} \%$ loading.

Figure S3. DRIFTS spectra in the $2000-1100 \mathrm{~cm}^{-1}$ acetate region of the $\mathrm{PdAu} / \mathrm{SiO}_{2}$ containing 0,5 , and $10 \mathrm{wt} \% \mathrm{~K}$ treated in (a) 0 , (b) 100 , and (c) $50 \mathrm{vol} \% \mathrm{AcOH}$ solutions after washing with water and drying overnight showing disappearance of acetate vibrational modes. As-synthesized $\mathrm{PdAu} / \mathrm{SiO}_{2}$ was used as background for all samples.

Figure S4. (a) $\mathrm{PdAu} / \mathrm{SiO}_{2}$ samples after wet impregnation and (b) filtrate collected after washing $\mathrm{PdAu} / \mathrm{SiO}_{2}$ samples with water showing color change versus AcOH vol $\%$ and K wt $\%$ loading.

Table S1. XANES energy and EXAFS fitting results for samples at $A u L_{\text {III }}$ edge

Sample	XANES Energy (keV)	Scattering path	$\begin{gathered} C N \\ (\pm 10 \%) \end{gathered}$	$\begin{gathered} R(\AA) \\ (\pm \mathbf{0 . 0 2} \AA) \end{gathered}$	$\begin{gathered} \Delta \sigma^{2} \\ \left(\times 10^{3} \AA\right) \end{gathered}$	$\begin{gathered} E_{0} \\ (\mathrm{eV}) \end{gathered}$
Au foil	11.9190	$\mathrm{Au}-\mathrm{Au}$	12	2.87	0.0	3.9
$\mathrm{PdAu} / \mathrm{SiO}_{2}$	11.9181	$\mathrm{Au}-\mathrm{Au}$	5.1	2.82	0.0	2.4
		Au-Pd	6.4	2.77	0.0	2.7
PdAu-0K ${ }^{\text {a }}$	11.9180	$\mathrm{Au}-\mathrm{Au}$	-	-	-	
		$\mathrm{Au}-\mathrm{Pd}$	-	-	-	-
PdAu-5K	11.9182	$\mathrm{Au}-\mathrm{Au}$	5.1	2.79	0.0	-2.3
		Au-Pd	6.3	2.76	0.0	3.9
PdAu-10K	11.9183	$\mathrm{Au}-\mathrm{Au}$	4.9	2.79	0.0	-1.8
		Au -Pd	6.4	2.76	0.0	3.9
PdAu-0K-50AA	11.9182	$\mathrm{Au}-\mathrm{Au}$	4.5	2.79	0.0	-1.9
		Au-Pd	6.6	2.77	0.0	5.6
$\text { PdAu-5K-50AA (a) }{ }^{a}$	11.9182	$\mathrm{Au}-\mathrm{Au}$	-	-	-	-
		$\mathrm{Au}-\mathrm{Pd}$	-	-	-	-
PdAu-5K-50AA (b) ${ }^{\text {a }}$	11.9182	$\mathrm{Au}-\mathrm{Au}$	-	-	-	-
		Au-Pd	-	-	-	-
PdAu-5K-50AA (c)	11.9184	$\mathrm{Au}-\mathrm{Au}$	4.3	2.82	0.0	-0.6
		$\mathrm{Au}-\mathrm{Pd}$	6.0	2.77	0.0	4.6
PdAu-10K-50AA ${ }^{a}$	11.9182	$\mathrm{Au}-\mathrm{Au}$	-	-	-	-
		Au-Pd	-	-	-	-
PdAu-0K-100AA	11.9181	$\mathrm{Au}-\mathrm{Au}$	4.6	2.80	0.0	-2.5
		Au-Pd	6.5	2.77	0.0	4.7
PdAu-5K-100AA	11.9184	$\mathrm{Au}-\mathrm{Au}$	5.3	2.80	0.0	-2.9
		Au-Pd	6.3	2.76	0.0	4.1
PdAu-10K-100AA	11.9185	$\mathrm{Au}-\mathrm{Au}$	5.7	2.82	0.0	0.5
		$\mathrm{Au}-\mathrm{Pd}$	5.7	2.77	0.0	3.9

${ }^{\text {a }}$ Data was too noisy for reliable EXAFS fitting.

Figure S5. Pd K edge XANES for the Pd foil (black) and KOAc-impregnated $\mathrm{PdAu} / \mathrm{SiO}_{2}$ samples containing 0 (red), 5 (blue), and 10 (green) wt\% K treated in either (a) water or (b) AcOH solution.

Table S2. XANES energy and EXAFS fitting results for samples at Pd K edge

Sample	XANES Energy (keV)	Scattering path	$\begin{gathered} C N \\ (\pm 10 \%) \end{gathered}$	$\begin{gathered} R(\AA) \\ (\pm 0.02 \AA) \end{gathered}$	$\begin{gathered} \Delta \sigma^{2} \\ \left(\times 10^{3} \AA\right) \end{gathered}$	$\begin{gathered} E_{0} \\ (\mathrm{eV}) \end{gathered}$
Pd foil	24.3503	Pd-Pd	12	2.75	-	-
$\mathrm{PdAu} / \mathrm{SiO}_{2}$	24.3508	Pd-Pd	7.7	2.74	1.0	2.7
		Pd -Au	2.4	2.74	1.0	-1.9
PdAu-0K	24.3498	Pd-Pd	7.6	2.75	1.0	3.3
		Pd -Au	2.3	2.75	1.0	-1.5
PdAu-5K	24.3506	Pd-Pd	7.3	2.74	1.0	2.6
		$\mathrm{Pd}-\mathrm{Au}$	2.6	2.74	1.0	-0.9
PdAu-10K	24.3511	Pd-Pd	7.4	2.75	1.0	3.1
		$\mathrm{Pd}-\mathrm{Au}$	2.6	2.75	1.0	-1.2
PdAu-0K-50AA	24.3502	Pd-Pd	7.1	2.75	1.0	2.3
		Pd-Au	2.4	2.75	1.0	-2.0
PdAu-5K-50AA (a)	24.3519	Pd-O	1.0	2.02	0.0	-3.6
		Pd-Pd	6.0	2.75	1.0	-6.4
		$\mathrm{Pd}-\mathrm{Au}$	1.4	2.75	1.0	-7.5
PdAu-5K-50AA (b)	24.3511	Pd-O	1.3	2.02	0.0	6.5
		Pd-Pd	5.6	2.75	1.0	2.1
		Pd -Au	1.3	2.75	1.0	-1.0
PdAu-5K-50AA (c)	24.3529	Pd -O	1.3	2.02	0.0	6.2
		$\mathrm{Pd}-\mathrm{Pd}$	5.3	2.75	1.0	2.6
		$\mathrm{Pd}-\mathrm{Au}$	1.2	2.75	1.0	3.1
PdAu-10K-50AA	24.3537	Pd-O	2.5	2.02	0.0	2.1
		Pd-Pd	3.5	2.75	1.0	-1.5
		$\mathrm{Pd}-\mathrm{Au}$	0.5	2.75	1.0	3.8
PdAu-0K-100AA	24.3514	Pd-O	0.9	2.02	0.0	5.9
		$\mathrm{Pd}-\mathrm{Pd}$	6.4	2.75	1.0	2.9
		$\mathrm{Pd}-\mathrm{Au}$	1.8	2.75	1.0	0.0
PdAu-5K-100AA	24.3509	Pd-O	1.0	2.02	0.0	6.1
		Pd-Pd	6.2	2.75	1.0	1.9
		$\mathrm{Pd}-\mathrm{Au}$	1.4	2.75	1.0	-1.0
PdAu-10K-100AA	24.3535	Pd-O	2.3	2.02	0.0	2.9
		$\mathrm{Pd}-\mathrm{Pd}$	3.9	2.75	1.0	-1.1
		Pd-Au	0.6	2.75	1.0	3.1

(a) PdAu-0K-50AA

(b) PdAu-5K-50AA

(c) PdAu-10K-50AA

Figure S6. XRD profiles of the (a) $\mathrm{PdAu} / \mathrm{SiO}_{2}$ treated in $50 \mathrm{vol} \% \mathrm{AcOH}(\mathrm{PdAu}-0 \mathrm{~K}-50 \mathrm{AA})$ and KOAc-impregnated $\mathrm{PdAu} / \mathrm{SiO}_{2}$ treated in $50 \mathrm{vol} \% \mathrm{AcOH}$ containing (b) $5 \mathrm{wt} \% \mathrm{~K}(\mathrm{PdAu}-5 \mathrm{~K}-$ 50AA) and (c) $10 \mathrm{wt} \% \mathrm{~K}$ (PdAu-10K-50AA). Blue line represents $\mathrm{Pd}(111)$ reference, and the gold line represents $\mathrm{Au}(111)$ reference. Green curve represents the Pd -rich PdAu alloy phase, and the gold curve represents pure Au phase.

Figure S7. XPS spectra at the (a) Pd 3 d and (b) Au 4 f core levels of the $\mathrm{PdAu} / \mathrm{SiO}_{2}$ treated in 50 vol\% AcOH (PdAu-0K-50AA) and KOAc-impregnated $\mathrm{PdAu} / \mathrm{SiO}_{2}$ treated in $50 \mathrm{vol} \% \mathrm{AcOH}$ containing $5 \mathrm{wt} \% \mathrm{~K}(\mathrm{PdAu}-5 \mathrm{~K}-50 \mathrm{AA})$ and $10 \mathrm{wt} \% \mathrm{~K}$ (PdAu-10K-50AA). BE values are $\pm 0.1 \mathrm{eV}$.

Table S3. Phase compositions, grain sizes, and $\mathrm{Pd}: \mathrm{Au}$ surface ratio of $50 \mathrm{vol} \% \mathrm{AcOH} / \mathrm{KOAc}-$ treated $\mathrm{PdAu} / \mathrm{SiO}_{2}$.

Sample	Phase composition ${ }^{\text {a }}$ (at\%)	$\begin{gathered} \text { Grain size }^{\text {b }} \\ (\mathbf{n m}) \end{gathered}$	Pd:Au surface ratio ${ }^{\text {c }}$ (at\%)
PdAu-0K-50AA	Au	16.4	77:23
	$\mathrm{Pd}_{75} \mathrm{Au}_{25}$	8.6	
PdAu-5K-50AA (a)	Au	15.6	73:27
	$\mathrm{Pd}_{74} \mathrm{Au}_{26}$	8.4	
PdAu-5K-50AA (b)	Au	19.0	74:26
	$\mathrm{Pd}_{76} \mathrm{Au}_{24}$	8.6	
PdAu-5K-50AA (c)	Au	17.4	74:26
	$\mathrm{Pd}_{76} \mathrm{Au}_{24}$	8.3	
PdAu-10K-50AA	Au	17.6	73:27
	$\mathrm{Pd}_{76} \mathrm{Au}_{24}$	8.8	

${ }^{a}$ Calculated from XRD data using Vegard's equation.
${ }^{\mathrm{b}}$ Calculated from XRD data using Scherrer's equation.
${ }^{\text {c }}$ Calculated from XPS data at Pd 3 d and Au 4 f core levels.

Figure S8. Deconvoluted DRIFTS spectra in the $2000-1100 \mathrm{~cm}^{-1}$ acetate region of the $\mathrm{PdAu} / \mathrm{SiO}_{2}$ treated in $50 \mathrm{vol} \% \mathrm{AcOH}$ ($\mathrm{PdAu}-0 \mathrm{~K}-50 \mathrm{AA}$) and $\mathrm{KOAc}-$ impregnated $\mathrm{PdAu} / \mathrm{SiO}_{2}$ treated in 50 $\mathrm{vol} \% \mathrm{AcOH}$ containing $5 \mathrm{wt} \% \mathrm{~K}$ (PdAu-5K-50AA) and $10 \mathrm{wt} \% \mathrm{~K}$ (PdAu-10K-50AA). v(C=O) peaks are located between $1800-1670 \mathrm{~cm}^{-1} . v_{\mathrm{as}}(\mathrm{COO})$ peaks are located between $1670-1500$ $\mathrm{cm}^{-1} . v_{\mathrm{s}}(\mathrm{COO})$ peaks are located between $1450-1390 \mathrm{~cm}^{-1} . \delta\left(\mathrm{CH}_{3}\right)$ peaks are located between $1390-1300 \mathrm{~cm}^{-1} . v(\mathrm{C}-\mathrm{O})$ peaks are located between $1300-1250 \mathrm{~cm}^{-1}$. As-synthesized $\mathrm{PdAu} / \mathrm{SiO}_{2}$ was used as background for all samples.

Table S4. ICP-OES analysis of metals recovered in filtrate after washing $50 \mathrm{vol} \% \mathrm{AcOH} / \mathrm{KOAc}-$ treated samples with water.

Sample	Pd recovered (\% of initial)	Au recovered (\% of initial)	K recovered (\% of initial)
PdAu-0K-50AA	4.6	0	-
PdAu-5K-50AA (a)	15.9	0	99
PdAu-5K-50AA (b)	16.0	0	95
PdAu-5K-50AA (c)	15.9	0	90
PdAu-10K-50AA	32.3	0	95

Figure S9. (a) Au LiII edge XANES, (b) Pd K edge XANES, and (c) Pd K edge EXAFS for the Pd foil (black) and KOAc-impregnated $\mathrm{PdAu} / \mathrm{SiO}_{2}$ samples containing 0 (red), 5 (blue), and 10 (green) $\mathrm{wt} \% \mathrm{~K}$ treated in $50 \mathrm{vol} \% \mathrm{AcOH}$ (v / v in water) solution.

Design of Experiments (DOE) and Statistical Analysis

Statistical analysis based on the design of experiments (DOE) presented in Table 1 of the Main Text was performed on 8 response variables selected from XRD, XPS, DRIFTS, XAS, and ICPOES data: 1) Au grain size, 2) PdAu grain size, 3) Pd surface content, 4) Pd^{2+} content, 5) monodentate acetate content on surface Pd , 6) $\mathrm{Pd}_{3}(\mathrm{OAc})_{6}$ content, 7) $\mathrm{K}_{2} \mathrm{Pd}_{2}(\mathrm{OAc})_{6}$ content, and 8) Pd loss after washing. The values of the responses are summarized in Tables S5-S7 based on the AcOH vol $\%$ and $\mathrm{K} \mathrm{wt} \%$ treatments for each sample.

Each of the responses were fit using Minitab software based on a least-squares linear regression model containing all linear, quadratic, and interaction effects of the two factors AcOH $\mathrm{vol} \%$ and $\mathrm{K} \mathrm{wt} \%$ (Equation 3 in the Main Text). The response surface plots are presented in Figures 9 and 10 of the Main Text. The fitting coefficients and their standard errors for all the response surface plots are presented in Tables S8-S15.

Coded coefficients were also calculated in Minitab by centering and scaling the variables so that the low and high factor levels coded as -1 and 1 , respectively. The transformation to coded coefficients is necessary in order to orthogonalize the factors and isolate the factor effects, allowing for relative comparisons between different effects. For example, a larger coded coefficient means that effect has a greater relative contribution to the response surface model. The coded coefficients and their standard errors for each response are also presented in Tables $\mathrm{S} 8-\mathrm{S} 15$.

The coded coefficients are then used to analyze which effects have statistically significant contributions to the response surface models. The t-values for each coefficient are calculated as the ratio between the value of the coefficient and its standard error. The two-tailed p-values are then calculated by the following equation:

$$
\begin{equation*}
p=2 *(1-P(T \leq|t|, d . f .)) \tag{S1}
\end{equation*}
$$

where $|t|$ is the absolute value of the t-value, d. f. is the degree of freedom calculated by subtracting the number of coefficients from total number of runs (d.f. $=5$ for a model with 6 coefficients and 11 runs), and $P(T \leq|t|, d . f$. $)$ is the cumulative distribution function for a t distribution at a particular t-value and degree of freedom. The calculated t-values and p-values are included in Tables S8 - S15. At the 95% confidence level $(\alpha=0.05)$ with 5 degrees of freedom, p ≤ 0.05 and $t \geq 2.571$ indicate statistical significance. Plotting the absolute value of the t-values in a Pareto chart of the standardized effects offers a visual representation to determine the degree of statistical significance for each factor (Figures S9 - S16).

Table S5. Au and $\mathrm{Pd}_{\mathrm{x}} \mathrm{Au}_{\mathrm{y}}$ grain size responses from experimental design.

Run	Sample	AcOH $(\mathbf{v o l \%})$	K $(\mathbf{w t \%})$	Grain Size (nm) Au	$\mathbf{P d}_{\mathbf{x}} \mathbf{A u}_{\mathbf{y}}$
1	PdAu-0K	0	0	13.4	8.3
2	PdAu-5K	0	5	13.4	8.1
3	PdAu-10K	0	10	14.4	8.1
4	PdAu-0K-50AA	50	0	16.4	8.6
5	PdAu-5K-50AA (a)	50	5	15.6	8.4
6	PdAu-5K-50AA (b)	50	5	19.0	8.6
7	PdAu-5K-50AA (c)	50	5	17.4	8.3
8	PdAu-10K-50AA	50	10	17.6	8.8
9	PdAu-0K-100AA	100	0	20.2	8.6
10	PdAu-5K-100AA	100	5	18.1	8.3
11	PdAu-10K-100AA	100	10	14.9	8.4

Table S6. Pd surface content, Pd^{2+} content, and Pd loss responses from experimental design.

Run	Sample	AcOH $(\mathbf{v o l} \%)$	\mathbf{K} $(\mathbf{w t \%} \%)$	Pd surface content $(\mathbf{a t \%})$	$\mathbf{P d}^{2+}$ content $(\%$ of Pd)	Pd loss $(\%)$
1	PdAu-0K	0	0	80	0	0.7
2	PdAu-5K	0	5	79	0	1.7
3	PdAu-10K	0	10	77	0	2.1
4	PdAu-0K-50AA	50	0	77	0	4.5
5	PdAu-5K-50AA (a)	50	5	73	25	15.9
6	PdAu-5K-50AA (b)	50	5	74	32.5	16.0
7	PdAu-5K-50AA (c)	50	5	74	32.5	15.9
8	PdAu-10K-50AA	50	10	73	62.5	32.3
9	PdAu-0K-100AA	100	0	79	22.5	7.4
10	PdAu-5K-100AA	100	5	76	25	11.6
11	PdAu-10K-100AA	100	10	68	57.5	28.4

Table S7. Pd-acetate responses from experimental design.

Run	Sample	AcOH $(\mathbf{v o l} \%)$	\mathbf{K} $(\mathbf{w t \%})$	Monodentate acetate on surface $\mathbf{P d}$	$\mathbf{P d} 3 \mathbf{3}^{(\mathbf{O A c})_{6}}$	$\mathbf{K}_{2} \mathbf{P d}_{\mathbf{2}}(\mathbf{O A c})_{6}$
1	PdAu-0K	0	0	0.00	0.00	0.00
2	PdAu-5K	0	5	0.00	0.00	0.00
3	PdAu-10K	0	10	0.81	5.55	0.00
4	PdAu-0K-50AA	50	0	0.00	0.61	0.53
5	PdAu-5K-50AA (a)	50	5	0.98	6.29	7.51
6	PdAu-5K-50AA (b)	50	5	1.28	6.31	7.50
7	PdAu-5K-50AA (c)	50	5	1.27	6.14	7.45
8	PdAu-10K-50AA	50	10	9.61	30.4	26.3
9	PdAu-0K-100AA	100	0	0.00	0.77	0.77
10	PdAu-5K-100AA	100	5	1.37	7.98	8.91
11	PdAu-10K-100AA	100	10	7.83	27.3	23.3

Table S8. Uncoded and coded parameters, t-values, and p-values of each effect for the Au grain size response curve.

Effect $^{\mathrm{a}}$	Uncoded parameters		Coded parameters			
	Coeff.	SE	Coeff.	SE	\boldsymbol{t}-value	\boldsymbol{p}-value
Constant	12.49	1.26	17.282	0.728	23.74	0.000
A	0.1307	0.0401	2.038	0.579	3.52	0.017
B	0.303	0.401	-0.508	0.579	-0.88	0.421
$A A$	-0.000571	0.000357	-1.426	0.892	-1.60	0.171
$B B$	-0.0076	0.0357	-0.190	0.892	-0.21	0.839
$A B$	-0.00658	0.00284	-1.644	0.710	-2.32	0.068

${ }^{\bar{a}} A$ is linear AcOH vol\% effect, B is linear K wt\% effect, $A A$ is quadratic AcOH vol\% effect, $B B$ is quadratic K wt\% effect, and $A B$ is AcOH vol $\%$ and KOAc wt $\%$ interaction effect

Table S9. Uncoded and coded parameters, t-values, and p-values of each effect for the PdAu grain size response curve.

Effect $^{\mathrm{a}}$	Uncoded parameters		Coded parameters			
	Coeff.	SE	Coeff.	SE	\boldsymbol{t}-value	\boldsymbol{p}-value
Constant	8.206	0.131	8.4887	0.0753	112.71	0.000
A	0.01838	0.00415	0.1746	0.0599	2.91	0.033
B	-0.0990	0.0415	-0.0327	0.0599	-0.55	0.609
$A A$	-0.000145	0.000037	-0.3614	0.0922	-3.92	0.011
$B B$	0.00967	0.00369	0.2417	0.0922	2.62	0.047
$A B$	-0.000086	0.000294	-0.0214	0.0734	-0.29	0.782

${ }^{\bar{a}} A$ is linear AcOH vol $\%$ effect, B is linear $\mathrm{K} \mathrm{wt} \%$ effect, $A A$ is quadratic $\mathrm{AcOH} \mathrm{vol} \%$ effect, $B B$ is quadratic $\mathrm{K} \mathrm{wt} \%$ effect, and $A B$ is AcOH vol $\%$ and KOAc $\mathrm{wt} \%$ interaction effect

Table S10. Uncoded and coded parameters, t-values, and p-values of each effect for the Pd surface content response curve.

Effect $^{\mathrm{a}}$	Uncoded parameters		Coded parameters			
	Coeff.	SE	Coeff.	SE	\boldsymbol{t}-value	\boldsymbol{p}-value
Constant	79.58	1.28	74.100	0.740	100.17	0.000
A	-0.1045	0.0407	-2.250	0.589	-3.82	0.012
B	-0.095	0.407	-3.000	0.589	-5.10	0.004
$A A$	0.000980	0.000362	2.450	0.906	2.70	0.043
$B B$	-0.0120	0.0362	-0.300	0.906	-0.33	0.754
$A B$	-0.00770	0.00288	-1.925	0.721	-2.67	0.044

${ }^{\bar{a}} A$ is linear AcOH vol\% effect, B is linear K wt $\%$ effect, $A A$ is quadratic AcOH vol\% effect, $B B$ is quadratic K wt\% effect, and $A B$ is $\mathrm{AcOH} \mathrm{vol} \%$ and KOAc wt $\%$ interaction effect

Table S11. Uncoded and coded parameters, t-values, and p-values of each effect for the Pd^{2+} content response curve.

Effect $^{\mathrm{a}}$	Uncoded parameters		Coded parameters			
	Coeff.	SE	Coeff.	SE	\boldsymbol{t}-value	\boldsymbol{p}-value
Constant	-6.0	11.4	28.68	6.54	4.39	0.007
A	0.743	0.360	17.50	5.20	3.36	0.020
B	-0.32	3.60	16.25	5.20	3.12	0.026
$A A$	-0.00568	0.00320	-14.21	8.01	-1.77	0.136
$B B$	0.182	0.320	4.54	8.01	0.57	0.595
$A B$	0.0350	0.0255	8.75	6.37	1.37	0.228

${ }^{\bar{a}} A$ is linear AcOH vol\% effect, B is linear K wt $\%$ effect, $A A$ is quadratic AcOH vol\% effect, $B B$ is quadratic K wt $\%$ effect, and $A B$ is AcOH vol $\%$ and KOAc wt $\%$ interaction effect

Table S12. Uncoded and coded parameters, t-values, and p-values of each effect for the monodentate acetate adsorbed on surface Pd response curve.

Effect $^{\text {a }}$	Uncoded parameters		Coded parameters			
	Coeff.	SE	Coeff.	SE	\boldsymbol{t}-value	\boldsymbol{p}-value
Constant	-0.19	1.48	1.631	0.854	1.91	0.114
A	0.0579	0.0470	1.400	0.680	2.06	0.095
B	-0.740	0.470	3.041	0.680	4.47	0.007
$A A$	-0.000650	0.000418	-1.63	1.05	-1.55	0.181
$B B$	0.0997	0.0418	2.49	1.05	2.38	0.063
$A B$	0.00703	0.00333	1.757	0.832	2.11	0.089

${ }^{a} A$ is linear AcOH vol $\%$ effect, B is linear $\mathrm{K} \mathrm{wt} \%$ effect, $A A$ is quadratic $\mathrm{AcOH} \mathrm{vol} \%$ effect, $B B$ is quadratic $\mathrm{K} \mathrm{wt} \%$ effect, and $A B$ is AcOH vol $\%$ and KOAc $\mathrm{wt} \%$ interaction effect

Table S13. Uncoded and coded parameters, t-values, and p-values of each effect for the $\mathrm{Pd}_{3}(\mathrm{OAc})_{6}$ trimer response curve.

Effect $^{\mathrm{a}}$	Uncoded parameters		Coded parameters			
	Coeff.	SE	Coeff.	SE	\boldsymbol{t}-value	\boldsymbol{p}-value
Constant	-0.98	3.60	7.27	2.07	3.51	0.017
A	0.189	0.114	5.09	1.65	3.09	0.027
B	-1.67	1.14	10.32	1.65	6.26	0.002
$A A$	-0.00192	0.00101	-4.80	2.54	-1.89	0.117
$B B$	0.269	0.101	6.72	2.54	2.65	0.046
$A B$	0.02102	0.00808	5.26	2.02	2.60	0.048

${ }^{\bar{a}} A$ is linear AcOH vol\% effect, B is linear K wt $\%$ effect, $A A$ is quadratic AcOH vol\% effect, $B B$ is quadratic K wt\% effect, and $A B$ is $\mathrm{AcOH} \mathrm{vol} \%$ and KOAc wt $\%$ interaction effect

Table S14. Uncoded and coded parameters, t-values, and p-values of each effect for the $\mathrm{K}_{2} \mathrm{Pd}_{2}(\mathrm{OAc})_{6}$ dimer response curve.

Effect $^{\mathbf{a}}$	Uncoded parameters		Coded parameters			
	Coeff.	SE	Coeff.	SE	\boldsymbol{t}-value	\boldsymbol{p}-value
Constant	-1.21	3.69	8.41	2.12	3.96	0.011
A	0.211	0.117	5.50	1.69	3.25	0.023
B	-0.97	1.17	8.05	1.69	4.77	0.005
$A A$	-0.00213	0.00104	-5.34	2.60	-2.05	0.095
$B B$	0.145	0.104	3.63	2.60	1.40	0.221
$A B$	0.02253	0.00827	5.63	2.07	2.72	0.042

${ }^{\bar{a}} A$ is linear AcOH vol\% effect, B is linear K wt $\%$ effect, $A A$ is quadratic AcOH vol\% effect, $B B$ is quadratic K wt $\%$ effect, and $A B$ is AcOH vol $\%$ and KOAc $\mathrm{wt} \%$ interaction effect

Table S15. Uncoded and coded parameters, t-values, and p-values of each effect for the Pd loss response curve.

Effect $^{\mathrm{a}}$	Uncoded parameters		Coded parameters			
	Coeff.	SE	Coeff.	SE	\boldsymbol{t}-value	\boldsymbol{p}-value
Constant	-0.78	4.12	16.11	2.37	6.79	0.001
A	0.407	0.131	7.16	1.89	3.79	0.013
B	-0.42	1.31	8.36	1.89	4.42	0.007
$A A$	-0.00361	0.00116	-9.03	2.91	-3.11	0.027
$B B$	0.111	0.116	2.78	2.91	0.96	0.383
$A B$	0.01952	0.00925	4.88	2.31	2.11	0.089

${ }^{a} A$ is linear AcOH vol $\%$ effect, B is linear $\mathrm{K} \mathrm{wt} \%$ effect, $A A$ is quadratic AcOH vol $\%$ effect, $B B$ is quadratic $\mathrm{K} \mathrm{wt} \%$ effect, and $A B$ is $\mathrm{AcOH} \mathrm{vol} \%$ and KOAc $\mathrm{wt} \%$ interaction effect

Figure S10. Pareto chart of standardized effects for Au grain size response where A is linear $\mathrm{AcOH} \mathrm{vol} \%$ effect, B is linear $\mathrm{K} \mathrm{wt} \%$ effect, $A A$ is quadratic $\mathrm{AcOH} \mathrm{vol} \%$ effect, $B B$ is quadratic $\mathrm{K} \mathrm{wt} \%$ effect, and $A B$ is $\mathrm{AcOH} \mathrm{vol} \%$ and $\mathrm{KOAc} \mathrm{wt} \%$ interaction effect $\left(d_{.} . f=5, \alpha=0.05, t_{\text {sig }}=\right.$ 2.571).

Figure S11. Pareto chart of standardized effects for $\mathrm{Pd}_{\mathrm{x}} \mathrm{Au}_{\mathrm{y}}$ grain size response where A is linear $\mathrm{AcOH} \mathrm{vol} \%$ effect, B is linear $\mathrm{K} \mathrm{wt} \%$ effect, $A A$ is quadratic AcOH vol $\%$ effect, $B B$ is quadratic $\mathrm{K} \mathrm{wt} \%$ effect, and $A B$ is $\mathrm{AcOH} \mathrm{vol} \%$ and $\mathrm{KOAc} \mathrm{wt} \%$ interaction effect $\left(d . f .=5, \alpha=0.05, t_{\text {sig }}=\right.$ 2.571).

Figure S12. Pareto chart of standardized effects for Pd surface content response where A is linear AcOH vol $\%$ effect, B is linear $\mathrm{K} \mathrm{wt} \%$ effect, $A A$ is quadratic AcOH vol $\%$ effect, $B B$ is quadratic $\mathrm{K} \mathrm{wt} \%$ effect, and $A B$ is $\mathrm{AcOH} \mathrm{vol} \%$ and $\mathrm{KOAc} \mathrm{wt} \%$ interaction effect (d.f. $=5, \alpha=$ $0.05, t_{\text {sig }}=2.571$).

Figure S13. Pareto chart of standardized effects for Pd^{2+} content response where A is linear $\mathrm{AcOH} \mathrm{vol} \%$ effect, B is linear $\mathrm{K} \mathrm{wt} \%$ effect, $A A$ is quadratic AcOH vol $\%$ effect, $B B$ is quadratic $\mathrm{K} \mathrm{wt} \%$ effect, and $A B$ is $\mathrm{AcOH} \mathrm{vol} \%$ and $\mathrm{KOAc} \mathrm{wt} \%$ interaction effect $\left(d . f .=5, \alpha=0.05, t_{\text {sig }}=\right.$ 2.571).

Figure S14. Pareto chart of standardized effects for modentate acetate adsorbed on surface Pd response where A is linear AcOH vol $\%$ effect, B is linear $\mathrm{K} \mathrm{wt} \%$ effect, $A A$ is quadratic AcOH vol $\%$ effect, $B B$ is quadratic $\mathrm{K} \mathrm{wt} \%$ effect, and $A B$ is $\mathrm{AcOH} \mathrm{vol} \%$ and KOAc $\mathrm{wt} \%$ interaction effect (d.f. $\left.=5, \alpha=0.05, t_{s i g}=2.571\right)$.

Figure S15. Pareto chart of standardized effects for $\mathrm{Pd}_{3}(\mathrm{OAc})_{6}$ response where A is linear AcOH $\mathrm{vol} \% \mathrm{effect}, B$ is linear $\mathrm{K} \mathrm{wt} \%$ effect, $A A$ is quadratic AcOH vol $\%$ effect, $B B$ is quadratic $\mathrm{K} \mathrm{wt} \%$ effect, and $A B$ is AcOH vol $\%$ and $\mathrm{KOAc} \mathrm{wt} \%$ interaction effect ($d . f$. $=5, \alpha=0.05, t_{\text {sig }}=2.571$).

Figure S16. Pareto chart of standardized effects for $\mathrm{K}_{2} \mathrm{Pd}_{2}(\mathrm{OAc})_{6}$ response where A is linear $\mathrm{AcOH} \mathrm{vol} \%$ effect, B is linear $\mathrm{K} \mathrm{wt} \%$ effect, $A A$ is quadratic $\mathrm{AcOH} \mathrm{vol} \%$ effect, $B B$ is quadratic $\mathrm{K} \mathrm{wt} \%$ effect, and $A B$ is $\mathrm{AcOH} \mathrm{vol} \%$ and $\mathrm{KOAc} \mathrm{wt} \%$ interaction effect $\left(d_{.} . f=5, \alpha=0.05, t_{\text {sig }}=\right.$ 2.571).

Figure S17. Pareto chart of standardized effects for Pd loss response where A is linear AcOH $\mathrm{vol} \%$ effect, B is linear $\mathrm{K} \mathrm{wt} \%$ effect, $A A$ is quadratic AcOH vol $\%$ effect, $B B$ is quadratic $\mathrm{K} \mathrm{wt} \%$ effect, and $A B$ is $\mathrm{AcOH} \mathrm{vol} \%$ and $\mathrm{KOAc} \mathrm{wt} \%$ interaction effect ($d . f .=5, \alpha=0.05, t_{\text {sig }}=2.571$).

