Electronic Supplementary Information

Self-supporting Nano-porous Carbon Nanosheet with Organized sp²-C Network for Unprecedented Catalytic Performance in Room-temperature H₂S Oxidization

Feng Hu, ^{‡a} Huan Chen, ^{‡a} Zhengliang Zhang,^a Bo Niu,^a Yayun zhang ^{*ab} and Donghui Long ^{*ab}

^a State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.

^b Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

* Corresponding authors:

E-mail: yy.zhang@ecust.edu.cn (Yayun Zhang);

longdh@mail.ecust.edu.cn (Donghui Long)

[‡] These authors contributed equally to this work

ABSTRACT: Graphene-based carbons have emerged promising applications in nonmetal catalysis, but is challenged by interlayer stack and poor porosity. Herein, the concept of graphene-liked carbons is proposed with porous carbon nanosheets (PCNs) being prepared via a melt-foaming strategy. PCNs show abundant pore structure and organized sp²-C network around nanopores. Moreover, the robust and curved nanosheet keeps spatially isolated and is thus totally stack free. The unimpeded accessibility to functional groups, defects and sp²-C network enables PCNs with outstanding activity of activating oxygen and high compatibility as carbon support. Thus, alkali-modified PCNs present appalling catalytic oxidation of hydrogen sulfide with unprecedented sulfur capacity up to $10.7g H_2S /g$ catalyst, 3-fold than that of graphene-based benchmark counterparts. This study provides new insight into the rational design of next-generation carbon catalyst, opening up exciting opportunities for diverse applications.

Table of Contents

1. Supplementary Figures	4
2. Supplementary Tables	16
Reference:	20

1. Supplementary Figures

Figure S1. SEM images of (a) PCNs-400, (b) PCNs-500, (c) PCNs-600, (d) PCNs-700.

Figure S2. AFM images of (a) PCNs-400, (b) PCNs-500, (c) PCNs-600, (d) PCNs-700.

Figure S3. TEM images of PCNs-600.

Figure S4. XPS of C1s of (a) PCNs-400, (b) PCNs-500, (c) PCNs-600, (d) PCNs-700, (e) PCNs-700-H₂O₂. (f)sp²-C, sp³-C content, and their ratio of PCNs-T.

Figure S5. (a) XPS full spectrum of PCNs-T. XPS of O1s of (b) PCNs-400, (c) PCNs-500, (d) PCNs-600, (e) PCNs-700, (f) PCNs-700-H₂O₂.

Figure S6. The XRD patterns of PCNs-T.

Figure S7. The Raman spectra of PCNs-700-x.

Figure S8. (a) Breakthrough curves and (b) the corresponding breakthrough sulfur capacities of PCNs-700 with different Na_2CO_3 loadings under $O_2/H_2S=10:1$.

Figure S9. (a) The XRD patterns and (b) N_2 adsorption-desorption isotherms of PCNs-700-50%

Figure S10. N_2 adsorption-desorption isotherms of PCNs-700-40% and PCNs-700-H₂O₂-40%.

Figure S11. (a) Breakthrough capacity of PCNs-700-40% under different ratio of O_2 to H_2S . (b) Breakthrough capacity of PCNs-T-40% under $O_2/H_2S=1:1$.

Figure S12. (a) The XRD patterns of PCNs-T-x-S. XPS of S 2p of (b)PCNs-700-20%-S, (C) PCNs-700-30%-S, (d) PCNs-700-40%-S.

2. Supplementary Tables

Sample	S _{BET} ^a (m ² /g)	V_t^{b} (cm ³ /g)	$S_{mic}^{c}(m^{2}/g)$	V _{mic} d (cm ³ /g)
PCNs-400	48	0.16	-	-
PCNs-500	406	0.5	42	0.02
PCNs-600	536	0.68	226	0.12
PCNs-700	768	1.36	107	0.05
PCNs-700 -H ₂ O ₂	585	1.05	40	0.02

Table S1. Surface area and porosity properties of all PCNs-T.

^a Specific surface area calculated by using multipoint BET theory.

^b Total pore volume calculated from nitrogen physisorption isotherm at $p/p_0=0.99$.

^{c,d} Micropore specific surface area and pore volume calculated by using t-plot method.

	С=О	С-О-С	0-C=0	H ₂ O/O ₂
PCNs-400°C	17.20%	48.85%	33.54%	0.41%
PCNs-500°C	18.01%	40.93%	40.42%	0.64%
PCNs-600°C	26.27%	30.52%	40.00%	3.21%
PCNs-700°C	27.20%	25.15%	44.30%	3.35%
PCNs-700-H ₂ O ₂	15.72%	46.59%	34.65%	3.03%

Table S2. Relative contents of different oxygen-containing groups in O1s spectra.

Sample	S _{BET} (m ² /g)	V _t (cm ³ /g)	S _{mic} (m ² /g)	V_{mic} (cm ³ /g)
PCNs-400-40%	27	0.12	-	-
PCNs-500-40%	105	0.16	-	-
PCNs-600-40%	302	0.37	11	0.01
PCNs-700-40%	238	0.46	40	0.02
PCNs-700-H ₂ O ₂ -40%	246	0.49	30	0.01

Table S3. Surface area and porosity properties of all PCNs-T-40%.

No.	Catalyst	^a C _{H2S} (ppm)	^b t(°C)	°O ₂ (%)	^d WHSV(g g ⁻¹ h ⁻¹)	^e Q _B (g g ⁻¹)	Ref
1	Na ₂ CO ₃ /PCNs	2500	25	1	45	10.7	This work
2	Alkaline graphene aerogels	1000	30	1	75	3.19	4
3	Na ₂ CO ₃ /Nitrogen- doped mesoporous carbon nanosheets	1000	RT	2	375	1.37	6
4	Alkaline carbon nanotubes	1000	30	1	112.5	1.51	7
5	Alkaline mesoporous carbon spheres	1000	30	1	/	2.46	8
6	Alkaline mesoporous carbon	1000	25	1	75	2.65	9
7	Na ₂ CO ₃ /carbon aerogels	1000	30	1	/	1.61	10
8	CuFe ₂ O ₄ /AC	1000 0	RT	21	/	0.67	11
9	MgO/rGO	1000	30	1	75	3.11	12
10	IAC	600	30	0.12	6	0.42	13
11	Nitrogen-rich	1000	30	/	37.5	2.77	14

Table S4. Recently reported carbon-based catalysts for H₂S oxidation.

 $\frac{1}{^{a}H_{2}S \text{ concentration in the inlet gas. }^{b}Reaction \text{ temperature. }^{c}O_{2} \text{ concentration in the inlet gas.}}$

^dWeight hourly space velocity, calculated by
$$WHSV = \frac{F \cdot \rho_{gas}}{m_{cat.}}$$

 $m_{cat.}$, where F is the flow rate (L/h),

 ρ_{gas} is the density of inlet gas (g/L), and m_{cat.} is the weight of used catalyst (g). Breakthrough sulfur capacity, g H₂S/g cat.

Reference:

- Y. Pan, M. Chen, Z. Su, K. Wu, Y. Zhang and D. Long, Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in roomtemperature H₂S oxidization, *Applied Catalysis B: Environmental*, 2021, 280, 119444.
- Y. Zou, W. Li, L. Yang, F. Xiao, G. An, Y. Wang and D. Wang, Activation of peroxymonosulfate by sp²-hybridized microalgae-derived carbon for ciprofloxacin degradation: Importance of pyrolysis temperature, *Chemical Engineering Journal*, 2019, **370**, 1286-1297.
- 3 Y. Li, Y. Lin, Z. Xu, B. Wang and T. Zhu, Oxidation mechanisms of H₂S by oxygen and oxygen-containing functional groups on activated carbon, *Fuel Processing Technology*, 2019, **189**, 110-119.
- 4 Y. Pan, M. Chen, M. Hu, M. Tian, Y. Zhang and D. Long, Probing the roomtemperature oxidative desulfurization activity of three-dimensional alkaline graphene aerogel, *Applied Catalysis B: Environmental*, 2020, **262**, 118266.
- 5 Y. Yuan, L. Huang, T. C. Zhang, L. Ouyang and S.Yuan, One-step synthesis of ZnFe₂O₄-loaded biochar derived from leftover rice for high-performance H₂S removal, *Separation and Purification Technology*, 2021, 279.

- 6 Z. Yu, X. Wang, Y. Hou, X. Pan, Z. Zhao, and J. Qiu, Nitrogen-doped mesoporous carbon nanosheets derived from metal-organic frameworks in a molten salt medium for efficient desulfurization, *Carbon*, 2017, **117**, 376-382.
- Q. Chen, J. Wang, X. Liu, X. Zhao, W. Qiao, D. Long, and L. Ling, Alkaline carbon nanotubes as effective catalysts for H₂S oxidation, *Carbon*, 2011, 49, 3773-3780.
- 8 Z. Zhang, J. Wang, W. Li, M. Wang, W. Qiao, D. Long, and L. Ling, Millimetersized mesoporous carbon spheres for highly efficient catalytic oxidation of hydrogen sulfide at room temperature, *Carbon*, 2016, **96**, 608-615.
- 9 Z. Zhang, W. Jiang, D. Long, J. Wang, W. Qiao, and L. Ling, A General Silica-Templating Synthesis of Alkaline Mesoporous Carbon Catalysts for Highly Efficient H₂S Oxidation at Room Temperature, ACS Applied Materials & Interfaces, 2017, 9, 2477-2484.
- 10 Q. Chen, J. Wang, X. Liu, Z. Li, W. Qiao, D. Long, and L. Ling, Structuredependent catalytic oxidation of H₂S over Na₂CO₃ impregnated carbon aerogels, *Microporous and Mesoporous Materials*, 2011, **142**, 641-648.
- 11 S. Chen, Y. Guo, J. Zhang, Y. Guo, and X. Liang, CuFe₂O₄/activated carbon adsorbents enhance H₂S adsorption and catalytic oxidation from humidified air at room temperature, *Chemical Engineering Journal*, 2022, **431**, 134097.
- 12 H. Xu, Y. Pan, F. Hu, B. Niu, Y. Zhang, and D. Long, Anti-corrosion MgO nanoparticle-equipped graphene oxide nanosheet for efficient room-temperature H₂S removal, *Journal of Materials Chemistry A*, 2022, **10**, 18308-18321.

- 13 Y. Xiao, S. Wang, D. Wu, and Quan Yuan, Catalytic oxidation of hydrogen sulfide over unmodified and impregnated activated carbon, *Separation and Purification Technology*, 2008, **59**, 326-332.
- F. Sun, J. Liu, H. Chen, Z. Zhang, W, Qiao, D Long, and L. Ling, Nitrogen-Rich
 Mesoporous Carbons: Highly Efficient, Regenerable Metal-Free Catalysts for
 Low-Temperature Oxidation of H₂S, ACS Catalysis, 2013, 3, 862–870.