Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information 1 Activating **Self-Anchored** 2 **Dynamically** Ni-Based Catalysts by **Mononuclear Fe for Efficient Water Oxidation** 3 4 Zhiyuan Zhang^{1,6}, Yuting Luo^{1,4,6}, Kun Wang^{1,6}, Qiangmin Yu¹, Xin Kang¹, Yingqi Liu¹, 5 Ke Xie⁴, Zhengxing Lv², Zhibo Liu³, Fengning Yang¹, Heming Liu¹, Ke Liu², Jiong Li², 6 Guangmin Zhou¹, Wencai Ren³, Hui-Ming Cheng^{1,3,5}, Jia Li^{*1}, Shuo Zhang^{*2} & Bilu 7 Liu*1 8 ¹Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of 9 Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua 10 University, Shenzhen 518055, P. R. China. 11 ²Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, 12 Chinese Academy of Sciences, Shanghai 201210, China. 13 ³Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, 14 Chinese Academy of Sciences, Shenyang, Liaoning 110016, P. R. China 15 ⁴Department of Electrical and Computer Engineering, University of Toronto, 35 St 16 George Street, Toronto, Ontario M5S 1A4, Canada. 17 ¹⁸ ⁵ Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 19 518055, China. 20 ⁶These three authors contributed equally. * E-mail: bilu.liu@sz.tsinghua.edu.cn; zhangshuo@sinap.ac.cn; li.jia@sz.tsinghua.edu.cn 21

This file contains description of experimental and calculation methods, 15 Supplementary
 Figures, and 8 Tables.

3

4 Methods

Chemicals. Nickel (II) nitrate hexahydrate (with a formula of Ni(NO₃)₂·6H₂O, AR, 5 Guangdong Guanghua Sci-Tech Co., Ltd, China), ammonium molybdate tetrahydrate 6 (with a formula of (NH₄)₆Mo₇O₂₄·4H₂O, AR, Shanghai Aladdin Biochemical Technology 7 Co., Ltd, China), and potassium hydroxide (KOH, AR, Shanghai Macklin Biochemical 8 Co., Ltd, China) were used without further purification. Ni foams (0.5 mm thick, purity 9 >99.99%, Linyi Gelon LIB Co., Ltd, China) were used as received. Ultrapure Direct-Q 10 water (18.2 M Ω cm⁻¹) was used to prepare all the aqueous solutions and for washing 11 samples. 12

13

Synthesis of Fe-doped NiMoO₄. Fe-doped NiMoO₄ on Ni foam was synthesized by a 14 hydrothermal method. First, a piece of Ni foam ($40 \text{ mm} \times 10 \text{ mm} \times 0.5 \text{ mm}$) was sonicated 15 in a 1 M HCl aqueous solution for 40 min to remove the surface oxide layer and then 16 washed with deionized water to remove residual HCl. Second, (NH₄)₆Mo₇O₂₄ (0.3 mol), 17 Ni(NO₃)₂·6H₂O (1.2 mmol), and Fe(NO₃)₃·9H₂O (0.075 mmol) were added to deionized 18 water (30 mL) and stirred to form a uniform solution. Finally, the mixed solution and the 19 cleaned Ni foam were transferred into a 100 mL Teflon-lined stainless-steel autoclave for 20 the hydrothermal reaction at 120 °C for 12 h. The prepared Fe-doped NiMoO₄ on Ni foam 21

1 was thoroughly washed with deionized water and then dried in a vacuum at 60 °C for 12
2 h.

3

Synthesis of Fe₁-NiMo, Fe₁-NiMo was synthesized by H₂ reduction of Fe-doped NiMoO₄. 4 The hydrothermal prepared Fe-NiMoO₄ was put into a quartz tube furnace. The tube was 5 firstly purged with Ar (400 sccm) for 30 min and then heated up to 500 °C at a rate of 8 °C 6 min^{-1} . The mixture of Ar (190 sccm.) and H₂ (10 sccm) was then introduced for 30 min to 7 prepare the Fe₁-NiMo catalyst. After that, H₂ was turned off and the furnace was cooled to 8 room temperature under Ar (190 sccm). For the NiMo control samples, the synthetic 9 procedures were the same as that of the Fe₁-NiMo catalyst, but the Fe precursors were not 10 added into the solution in the hydrothermal growth step. 11

- 12
- 13

14 **Materials characterization.** The morphology of the samples was examined by SEM (5 15 kV, Hitachi SU8010, Japan). HRTEM analyses were carried out at an electron acceleration 16 voltage of 300 kV (FEI Titan Cubed Themis G2 300, USA). Structural and chemical 17 analyses of the samples were performed by powder XRD (Cu K α radiation, λ =0.15418 nm, 18 Bruker D8 Advance, Germany). High-resolution XPS was performed with Al K α X-rays 19 (PHI5000VersaProbeII, Japan, and ESCALAB 250Xi, USA). The XPS profile was 20 performed by Ar etching with an accelerating voltage of 4 kV and an angle of 45°. The 21 element content was tested by ICP-OER (SPECTRO Arcos II MV, Germany). The 1 reconstructed sample for postmortem characterization (SEM, HRTEM, ICP-OES, and 2 XPS) experienced an OER process at a current density of ~100 mA cm⁻² for 100h. The 3 sample named OC was immersed in oxygen saturated 1M KOH solution for 30 min. The 4 reconstructed samples for characterization were taken out from the electrolyte, then washed 5 with water, and finally dried in a vacuum drier. The transfer procedure was finished within 6 one minute.

7

In-situ XAS measurements. The XAS spectra at the Fe and Ni K-edges were recorded at 8 the BL11B beamline of the Shanghai Synchrotron Radiation Facility (SSRF). The beam 9 current of the storage ring was 220 mA in a top-up mode. The incident photons were 10 monochromatized by a Si (111) double-crystal monochromator, with an energy resolution 11 $\Delta E/E \sim 1.4 \times 10^{-4}$. The spot size at the sample was $\sim 200 \ \mu m \times 250 \ \mu m$ (H \times V). The XAS 12 spectra of the samples at Fe and Ni K-edges were calibrated by the Fe and Ni reference 13 foils, respectively. The Fe₁-NiMoFe catalyst powders were exfoliated from Ni foam 14 supports and then loaded on carbon papers. In-situ XAFS measurements were performed 15 with the carbon paper as a working electrode using a homemade in-situ electrochemical 16 cell setup. A graphite rod was used as a counter electrode and a double-salt-bridge saturated 17 calomel electrode (SCE) as a reference electrode in 1.0 M KOH solution. Electrochemical 18 measurements were conducted on CHI 660E electrochemical workstation. XAFS 19 measurement was carried out after potential was for 10 min. In-situ XAFS spectra at the 20 21 Ni and Fe K-edges were collected in fluorescence mode, with a Lytle ionization chamber

1 filled with Ar. Ni and Fe K edges of references are collected in transition mode.

2 XAFS data analysis. The data of XAFS were processed with ATHENA software implemented in the IFEFFIT software packages.¹ The raw data of XAFS were background 3 subtracted from the overall absorption and then normalized regarding the edge-jump step. 4 Next, the k^3 -weighted $\gamma(k)$ data of Fe K-edge and Ni K-edge were Fourier transformed to 5 R space using a Hanning window ($dk = 1.0 \text{ Å}^{-1}$) in k-space, which separates the 6 contributions of different coordination shells to the EXAFS data. EXAFS of Fe K-edge 7 were Fourier transformed between 2.670 and 12.085 Å⁻¹. And EXAFS data Ni K-edge were 8 Fourier transformed between 2.556 and 12.335 Å⁻¹. The quantitative structure parameters 9 of Fe were obtained by least-squares fitting of EXAFS data with ATERMIS software in 10 11 the IFEFFIT software packages. The fitting was according to the EXAFS equation:

$$\chi(k) = \sum_{i} \frac{N_i S_0^2 F_i(k)}{k R_i^2} \sin\left(2kR_i + \varphi_i(k)\right) e^{\frac{-2R_i}{\lambda(k)} - 2\sigma_i^2 k^2}$$

where $F_i(k)$, the effective scattering amplitude, $\lambda(k)$ the mean free path, and $\varphi_i(k)$, the effective scattering phase shift were theoretically calculated by the ab-intio code FEFF 6². The fitting was conducted in R space with the single scattering path of the first and the second coordination shells. The multiple scattering paths are not considered in our fitting since the noise of the in-situ EXAFS data is relatively high. The fitting in R space is more reasonable than in k space in this work because we cannot use all the path in the EXAFS fitting.

20 The wavelet transformations of EXAFS were performed in the k range between 2.65

1 and 12.10 Å⁻¹ with a k step of 0.05 Å⁻¹ and the R range between 0 and 6 Å with the
2 hamaFortran program by using the Morlet wavelets³:

$$\varphi(k) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{k^2}{2\sigma^2}} (e^{i\omega k} - e^{-\frac{k^2}{2}})$$

4 Where ω is the frequency and σ is the half width. We chose ω=6 and σ=0.83 to get a high
5 resolution in the region of the second coordination shell of pristine Fe₁-NiMo and Fe₁6 NiMo under OC conditions. The wavelet transformation of EXAFS of Fe₁-NiMo at 1.47
7 V vs RHE is performed with ω=5 and σ=1.2.

8

In-situ XRD measurements. The XRD measurements were conducted with a synchrotron 9 radiation X-ray beam (16 keV) at the BL17U beamline of the Shanghai Synchrotron 10 Radiation Facility (SSRF). The working electrode for in-situ XRD measurement was 11 prepared by the following two step. In the first step, we exfoliated catalyst powders and 12 collected them. We put a piece of Ni foam loading Fe₁-NiMo in a polypropylene tube and 13 shook the tube violently, then some powders falling off from the Ni foam was collected. A 14 magnate was then used to separate the fragments of Ni foam from Fe₁-NiMo in the 15 powders. The exfoliation and collection processes were done in a glove box filled with Ar 16 gases. In the second step, we prepare the working electrode for in-situ XRD. 10 mg of Fe₁-17 NiMo powers were dispersed in 1 mL isopropanol under sonication and formed a uniform 18 ink. Then, 400 μ L ink was gradually dropped on carbon paper (1.5 cm \times 1.5 cm) for the 19 20 in-situ XRD measurement. In-situ XRD measurements were performed with the carbon

paper as a working electrode using a homemade in-situ electrochemical cell setup. A
 graphite rod was used as a counter electrode and a mercuric oxide electrode as a reference
 electrode in 1 M KOH solution. The electrode potential was set as 0.7 V vs Hg/HgO
 reference. The reflection patterns were collected by a plane detector (Dectris Eiger 16M,
 E-32-0111) with an exposure time of 1 s and an exposure period of 1 s.

6

In-situ Raman measurements. Raman spectra were collected using a 633 nm laser 7 8 excitation with a beam size of $\sim 1 \,\mu m$ grating (Horiba LabRAB HR800, Japan). Catalyst powders were exfoliated from Ni foam and then were loaded on a Ti foil whose surface is 9 coated gold by E-beam evaporation. In-situ Raman measurements were performed with the 10 gold-coated Ti foil that was loaded with catalysts as a working electrode using a homemade 11 in-situ electrochemical cell setup. A Pt wire was used as a counter electrode and a double 12 salt bridge SCE as a reference electrode in 1 M KOH solution. The scattered light was 13 collected by a 50 X objective lens and then directed to a charge-coupled device (CCD) 14 detector. Before in-situ experiments, the monochromator was calibrated by 520.7 cm^{-1} , the 15 peak of silicon. 16

17

18 Electrochemical measurements. The mass loading of the Fe₁-NiMo and NiMo catalyst 19 were measured to be 3.7 mg cm⁻² and 8.4 mg cm⁻² respectively. IrO₂ with a mass loading 20 of ~4 mg cm⁻² was drop-casted on Ni foam as a comparison sample. The Ni foam loaded 21 IrO₂ was annealed in Ar at 500 °C before the electrochemical test. A standard three-

1 electrode electrolyzer with oxygen-saturated KOH (1.0 M) was used in all tests, a doublesalt-bridge SCE as reference electrodes and a graphite rod as counter electrodes. The scan 2 rate was 1 mV s⁻¹ for cyclic voltammetry tests. The cyclic voltammetry test was tested 3 repeatedly before stable and the final data were reported. To eliminate the signal from the 4 oxidation of Fe and Ni, the negatively scanned polarization curves were used. For fair 5 comparisons, an 85% iR correction was taken. The distance between the reference 6 electrode and the working electrode was fixed by a capillary filling with saturated KCl 7 solutions. And the SCE is immersed in this capillary, constituting a double salt bridge 8 setup. The double-salt-bridge SCE was used as reference electrode in all the tests except 9 in-situ XRD measurements. Faradaic efficiencies were defined as the ratio of O_2 volume 10 collected in an experiment to the volume in theory, and O2 was collected by the water 11 drainage method. Stability tests were performed by the chronoamperometry measurements 12 method. 13

14 To get specific activity, the reaction current was normalized by the electrochemical

^C_{dl} ¹⁵ surface area (ECSA) of catalysts. ECSA was calculated by $ECSA = \frac{C_{dl}}{C_s}$, where C_{dl} is the ¹⁶ electrochemical double-layer capacitance of working electrodes and C_s is specific ¹⁷ capacitance of the electrode materials, which was recommended as 0.04 mF cm⁻² in ¹⁸ alkaline^{4, 5}. Considering the reconstruction of catalysts, the electrochemical double-layer ¹⁹ capacitance was tested after the OER process. The specific activity normalized by the ²⁰ redox-active sites was also provided, where the reducing reactions is assumed as a single 1 electron reaction and all the metal atoms that participated in the reducing reaction are 2 assumed the active sites. The number of redox-active (m_{redox}) sites was calculated

$$\int \frac{j(E)}{v} A dE$$

3 according to the area of reducing peak according to $m_{redox} = nF$, where *j* is the 4 current density, *E* is the electrode potential, *v* is the scan rate, A the geometric surface area 5 of working electrodes, F is the Faraday constant (96485 C mol⁻¹), and *n* is the number of 6 electrons involved in the reaction.

$$j \times A$$

TOF was calculated by TOF= $4 \times F \times m$. In this study, we assumed all metal atoms, including Ni, Fe, Mo, and Ir, in catalysts are counted as active sites to avoid overwhelming of activity of catalysts, and the amounts of metal elements of Fe₁-NiMo and NiMo were obtained by ICP-OES (Table S8). TOF based on m_{redox} was also provided.

11

12 **Membrane electrode assembly measurement.** The membrane electrode measurement 13 was performed in a homemade step (Figure S14) under ambient temperature and pressure 14 with Fe₁-NiMo catalysts grown on Ni foam as the anode and commercial Pt/C catalysts as 15 the cathode. A Pipnioer anion exchange membrane was used to separate the anode and the 16 cathode chambers. The flow rate of anolyte is about 40 mL min⁻¹.

17

18 **DFT calculations.**

19 All DFT calculations were performed by the Vienna Ab initio Simulation Package

1 (VASP).⁶⁻⁸ The generalized gradient approximation (GGA) of the Perdew-Burke-2 Ernzerhof (PBE) functional⁹ and the projector augmented-wave (PAW) potential¹⁰ were employed. Grimme method^{11, 12} was used to consider the van der Waals' interaction for 3 layer materials. The GGA + U calculations were performed using the model proposed by Dudarev et al.,¹³ with the effective U values of 6.4, and 4.0 eV for Ni and Fe, respectively. 5 The layered oxyhydroxide monolayers were constructed by using a 4×4 supercell. The 6 constructed supercell was isolated with a 15 Å vacuum space in the z-direction. For all 7 geometry optimizations, the cutoff energy was set to 520 eV. Monkhorst–Pack grids (3 \times 8 3×1) were used to sample the Brillouin zones of the supercell. The force and energy 9 convergence criterion were set to be 2×10^{-2} eV Å⁻¹ and 10^{-5} eV, respectively. The (001) 10 facet of NiOOH is used in calculations because it is considered to be energetically 11 favorable to absorbing water molecules and forming the electrode-solution interface.¹⁴ 12 In alkaline conditions, OER can occur via the following four elementary steps: 13 $* + OH^- \rightarrow * OH + e^-$ (1) 14 $* OH + OH^- \rightarrow * O + H_2O + e^-$ (2) 15 $*0 + 0H^{-} \rightarrow *00H + e^{-}$ (3) 16 $* 00H + 0H^{-} \rightarrow 0_{2} + H_{2}0 + e^{-}$ (4) 17 where * denotes the active sites on the catalyst surface. The computational hydrogen 18

18 where * denotes the active sites on the catalyst surface. The computational hydrogen
19 electrode (CHE) ^{15, 16} was used to calculate the free energies of intermediates. The free
20 energy of an adsorbed species is defined as

 $21 \quad \Delta G = \Delta E + \Delta Z P E - T \Delta S (5)$

1 where ΔE is the electronic adsorption energy, ΔZPE is the zero-point energy difference 2 between adsorbed and gaseous species, and T ΔS is the corresponding entropy difference 3 between these two states.

5 Figure S1. Synthesis and characterization of the Fe₁-NiMo catalyst. (a) Synthesis
6 flowchart and morphology evolution process of the Fe₁-NiMo. (b-e) SEM image (b),
7 HRTEM image (c), and EDS mapping (d), and (e) PXRD pattern Fe₁-NiMo before

immersed into KOH electrolyte. The results indicate that the Fe₁-NiMo composed of
 Ni₄Mo nanoparticles and MoO₂ prisms. For short, it is denoted as Fe₁-NiMo in this work.
 f, FT-EXAFS at Fe K-edge of pristine Fe₁-NiMo and Fe₂O₃ reference, demonstrate that Fe
 in pristine Fe₁-NiMo exist as mononuclear metal center species.

7 Figure S2. Comparison of XANES at Fe K-edge of Fe₁-NiMo and contrasts. These

8 results shows that Fe in Fe_1 -NiMo is not locate in isolated phase.

2 Figure S3. SEM images of the reconstructed Fe₁-NiMo. These images indicate the
3 reconstructed catalyst is assembled by nanoparticles.

Figure S4. In-situ XAFS of the Fe₁-NiMo at the Ni K-edge. XANES (a), FT-EXAFS (b),
of Fe₁-NiMo under ex-situ condition (pristine) and OER condition (from OC to 1.77 V vs
RHE in 1 M KOH). These results state that Ni mainly maintains metallic state under OER
condition.

2 Figure S5. XPS survey spectra of Fe₁-NiMo. The pristine Fe₁-NiMo(a), and Fe₁-NiMo 3 etched with Ar ions for 10s (b), Fe₁-NiMo after OC (c), Fe₁-NiMo after reconstructed under 4 OER (d), reconstructed Fe₁-NiMo etched with Ar ions for 10 s (e), and reconstructed Fe₁-5 NiMo etched with Ar ions for 20 s (f). The rate of etching is ~ 0.2 nm s⁻¹. Fe 2*p* peaks are

1 overlapped with Ni LM4 and Ni LM5.

2

3 Figure S6. Ni 2p XPS of pristine Fe₁-NiMo (a), reconstructed Fe₁-NiMo (b), and Ar

4 ions etched reconstructed Fe₁-NiMo (c). The metallic Ni disappeared in reconstructed
5 Fe₁-NiMo but arise after etched by Ar ions. The peak positions of main lines are marked
6 below the spectra.

2 Figure S7. Mo 3d XPS of the reconstructed Fe₁-NiMo (a), and reconstructed Fe₁-

3 NiMo etched by Ar ions for 10 s (b). The signal of Mo 3d is not detected in the

4 reconstructed surface, but appears after Ar ions etching.

5

- 7 Figure S8. Elemental quantification results of the pristine and the reconstructed Fe₁-
- 8 NiMo catalyst from ICP-OES, showing the dissolution of Mo.

9

2 Figure S9. Semi-quantitative ratio of Fe to Ni from XPS depth-profile of the
3 reconstructed Fe₁-NiMo. The rate of etching is ~ 0.2 nm s⁻¹, indicating that Fe mainly
4 located at the top ~4 nm on the surface.

Figure S10. In-situ characterization of NiMo. a, b, XANES (a) and FT-EXAFS (b) of
NiMo under different condition and Ni foil reference. c, In-situ Raman spectrum of NiMo
under 1.47 V vs RHE. These results indicate that NiMo is also composed of metallic core
and NiOOH shell under OER condition.

2 Figure S11. XPS survey spectra of pristine NiMo (a), NiMo after OC (b), NiMo after

3 reconstructed under OER. The rate of etching is ~ 0.2 nm s^{-1} .

4

1

6 Figure S12. XANES spectra at Fe K-edge of pristine Fe₁-NiMo, Fe₂O₃ reference and

- Fe_3O_4 reference. The absorption edge position of Fe_1 -NiMo is closed to Fe_2O_3 , indicating
- 2 the valance state of Fe in Fe₁-NiMo is closed to Fe^{3+} .

5 Figure S13. Linear exportation of Fe K-edge position of Fe₁-NiMo and reference

- **compounds.** This result indicates that Fe in Fe₁-NiMo is oxidized to a Fe^{4+} .

9 Figure S14. The in-situ k³-weighted (a), and k²-weighted (b), EXAFS spectra at Fe K-

10 edge of Fe₁-NiMo.

2 Figure S15. Comparison of XANES at Fe K-edge of Fe₁-NiMo under OC conditions

3 and FeOOH. The XANES of Fe₁-NiMo shows a higher pre-edge peak and a lower

4 intensity of the white line peak compared to that of FeOOH.

5

2 Figure S16. CV curves of (a)Fe₁-NiMo, (b) NiMo, (c) IrO₂, and (d) Ni foam in 1.0 M

3 KOH electrolyte.

6 Figure S17. Electrochemical double layer capacities of Fe₁-NiMo, NiMo, IrO₂, and Ni

foam.

2 Figure S18. Polarization curves (a), and TOFs (b) normalized by the areas of the 3 redox peaks. This calculation is based on the assumption that the reducing reaction is a 4 single electron reaction and all the metal atoms that participated in the reducing reaction 5 are the active sites.

8 Figure S19. Exchange current densities of Fe₁-NiMo, NiMo, IrO₂, and Ni foam. These

- 1 results indicate Fe₁-NiMo process highest activity.
- 2

- 4 Figure S20. OER activity of Fe site in Fe₁-NiMo. a, Free energy diagram of OER on the
- 5 Fe site. **b**, OER cycles for Fe site. (Orange, Fe; grey, Ni; red, O; white, H)
- 6

9

Figure S22. OER activity of h-Fe₁-NiOOH with a Ni/Fe ratio of 8:1. (a) Atomic model
of Fe₁-NiOOH with two mononuclear Fe. The Ni^{(2~3)+} with a magnetic moments of 1.7 μ_B
is labeled by a blue cycle. The magnetic moments of Fe is 4.2 μ_B, corresponding to Fe⁴⁺. (b)
Free energy diagram of OER on the Ni^{(2~3)+} site.

8 Figure S23. Structure of h-Fe₁-NiOOH at * (a), *OH (b), *O (c), *OOH (d) step.
9

5 Figure S25. Stability test of Fe₁-NiMo. This result demonstrates the high stability of Fe₁-

6 NiMo for oxygen evolution. This data is obtained at 1.569 V vs RHE without iR correction.

7 And the resistance of solution is 1.065 Ω .

1

- 3 Figure S26. Setup for measuring the performance of Fe₁-NiMo in membrane
- 4 electrode assembly.
- 5
- 6 Table S1. Semi-quantitative results of XPS depth-profile of as pristine Fe₁-NiMo.

	Element	Fe	Ni	Mo
Concentration	Before etching	1.79±0.19	25.01±2.86	73.19±2.90
(at%)	10s etching ^a	0.10±0.14	28.53±4.65	71.37±4.52

7 aThe rate of etching in this work is ~ 0.2 nm s⁻¹

8

9 Table S2. Semi-quantitative results of XPS depth-profile of reconstructed Fe₁-NiMo.

	Element	Fe	Ni	Мо
Concentration	Before etching	11.36±2.51	88.52±2.36	0.12±0.16
(at%)	10s etching	1.48 ± 1.44	80.34±1.89	18.27 ± 1.18
	20s etching	0.31±0.44	94.12±1.10	5.57±0.67

- 11 Table S3. Structural parameters of Fe₁-NiMo as well as reference samples extracted
- 12 from the Fe K-edge EXAFS fitting. ($S_0^2=0.76$)

					Debye-	
Name	Atomic scatter	Coordination Number	Interatomic distance (Å)	ΔE0 (eV)	Waller factor (10 ⁻ ³ ×Å ²)	R factor
Fe ₂ O ₃	Fe-O	6.00	2.03±0.13	-2.731	12.4	0.0056
Fe ₁ -						
NiMo-	Fe-O	4.74±0.95	2.02±0.13	0.117	11.8	0.0070
Pristine						
Fe ₁ -	Fe-O	4.87±0.97	2.01±0.03	-0.895	6.75	
NiMo- OC	Fe-Ni	2.92±0.58	3.09±0.07	-4.531	14.08	0.013
Fe ₁ -	Fe-O	5.32±1.06	1.94±0.09	-2.129	8.03	
NiMo- 1.47 V	Fe-Ni	3.19±0.64	2.86±0.04	-9.97	9.18	0.0032

1 The k^3 -weighted EXAFS of Fe K-edge was Fourier transformed to R space using a Hanning

2 window (dk = 1.0 Å⁻¹) in k-space between 2.670 and 12.085 Å⁻¹. The amplitude-reduction

3 factor S_0^2 was determined by fitting the experimental Fe₂O₃ powder data.

- 4
- 5

6 Table S4. A comparison of the OER activity in 1M KOH that normalized by ECSA

Catalysts	Overpotential at 1 mA cm ⁻² _{ECSA} (mV)	reference

Fe ₁ -NiMo	225	This
		work
Ni ₈₃ Fe ₁₇ -ONCAs	215	17
Ni _{0.8} Fe _{0.2} -AHNA	234	18
Fe-doped Ni(OH) ₂	259	19
Se-FeOOH	324	20
EA-FCCA	257	21
NR-Ni(OH) ₂	232	22
Fe-Co ₃ O ₄	>300	23
Co _{0.85} Se-20	248	24
CuO nanoparticles	340	25

- 1
- 2 **Table S5.** Magnetic Moment of Ni in Fe₁-NiOOH and NiOOH at different stage of OER

3 process.

	Magnetic Moment in corresponding stage (μ_B)			
Catalyst	*	*OH	*0	*OOH
Fe ₁ -NiOOH	1.7	1.7	1.4	1.7
NiOOH	1.7	1.7	1.1	1.7
h-Fe ₁ -NiOOH	1.7	1.7	1.4	1.7

4

5 Table S6. A comparison of the OER performance in 1M KOH that normalized by

6 geometry area.

Material	Current density (mA cm ⁻²)	Overpotential	Reference
		(mV)	
Fe ₁ -NiMo	10	202	This
	50	227	work
	100	245	
	500	315	
	1000	378	
Fe-doped β-Ni(OH)2	10	219	19
$(Ni_xFe_{1-x})_2P$	20	219	26
2D amorphous FePO ₄	10	218	27
	300	270	
(NiFe) ₂ P(O) nano cube	10	150	28
arrays	800	530	
Co-Ni-Se/C/NF	30	270	29
	50	300	
NiCoP-NWAs nanocone	20	270	30
arrays	100	370	
2D NiCoFe phosphate	10	240	31
NSs/N			
Ni _{0.65} Ga _{0.30} Fe _{0.05} /NF	10	200	32
NiFe/NiCo ₂ O ₄	1200	340	33
Ni _{0.8} Fe _{0.2} -AHNA	10	193	18

	50	221	
	100	230	
	500	248	
	1000	258	
Se-(NiCo)S/OH	10	155	34
	120	240	
Ni-Fe-OH@Ni ₃ S ₂ /NF	10	165	35
	100	240	
	500	370	
	1000	469	
	1500	565	
Ni ₃ FeN-NPs	10	280	36
	900	970	
FeCoNi-HNTAs	10	184	37
	10	204	
Co-doped FeNi carbonate	50	216	38
hydroxide	100	225	
	500	254	
Nanostructured NiFe	500	261	39
(oxy)hydroxide	300		
FeNiMo oxyhydroxide	10	180	40
Fe(PO ₃) ₂ /Ni ₂ P	500	265	41
Se doped FeOOH	500	348	20

$Ni_xFe_{1-x}Se_2$ -derived oxide	10	195	42
	265	250	
NiMoN@NiFeN	100	277	43
	500	377	
NiMoO _x /NiMoS	10	186	44
	100	225	
	500	278	
	1000	334	
NiFe coordination	10	188	45
polymer	50	214	
	100	234	
	150	249	
	200	260	
FeP/Ni ₂ P	10	154	45
	690	281	
	1000	293	
	277	1277	
NiVIr-LDH	10	180	46
	100	272	
NiFe-nanomeshes in	100	208	47
graphene-like film	500	253	
	1000	270	
3D-LDH @ Ni foam	50	239	48

 100	252
500	300
1000	340

2 Table S7. Elemental analysis of the electrolyte tested with Fe₁-NiMo after the

3 reaction.

Element	Fe	Ni	Мо
Concentration	ND ^a	ND	466.513±8.167
(mg/L)			

4 aND Stands for below the detection limit of our facility (0.002 mg/L of Fe, 0.008

- 5 mg/L of Ni, and 0.004 mg/L of Mo).
- 6

7 Table S8. Elemental analysis of Fe₁-NiMo and NiMo after the reaction

	element	Fe	Ni	Mo
Concentration	Fe ₁ -NiMo	1.49	60.06	4.99
(wt%)	NiMo	0.02ª	71.76	5.13

8 ^aThe trace amount of Fe is came from the pollution in the experiment.

1 Supplementary Reference

2	1.	Newville BRM. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray
3		absorption spectroscopy using IFEFFIT Journal of Synchrotron Radiation 2005,
4		12: 537-541.
5	2.	Rehr JJ, Albers RC. Theoretical approaches to x-ray absorption fine structure.
6		<i>Reviews of Modern Physics</i> 2000, 72 (3): 621-654.
7	3.	Funke H, Scheinost AC, Chukalina M. Wavelet analysis of extended x-ray
8		absorption fine structure data. Phys. Rev. B 2005, 71(9).
9	4.	McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF.
10		Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction
11		Electrocatalysts for Solar Water Splitting Devices. J. Am. Chem. Soc. 2015,
12		137 (13): 4347-4357.
13	5.	McCrory CCL, Jung S, Peters JC, Jaramillo TF. Benchmarking Heterogeneous
14		Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013,
15		135 (45): 16977-16987.
16	6.	Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical review
17		<i>B</i> 1993, 47 (1): 558.
18	7.	Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-
19		amorphous-semiconductor transition in germanium. Physical Review B 1994,
20		49 (20): 14251.
21	8.	Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy
22		calculations using a plane-wave basis set. <i>Physical review B</i> 1996, 54 (16): 11169.
23	9.	Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made
24		Simple. Phys Rev Lett 1996, 77(18): 3865-3868.
25	10.	Blöchl PE. Projector augmented-wave method. Physical review B 1994, 50(24):
26		17953.
27		

1	11.	Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio
2		parametrization of density functional dispersion correction (DFT-D) for the 94
3		elements H-Pu. The Journal of chemical physics 2010, 132(15): 154104.
4	12.	Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion
5		corrected density functional theory. J. Comput. Chem. 2011, 32(7): 1456-1465.
6	13.	Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP. Electron-
7		energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study.
8		<i>Phys. Rev. B</i> 1998, 57 (3): 1505-1509.
9	14.	Zhou Y, López N. The Role of Fe Species on NiOOH in Oxygen Evolution
10		Reactions. ACS Catal. 2020, 10(11): 6254-6261.
11	15.	Rossmeisl J, Logadottir A, Nørskov JK. Electrolysis of water on (oxidized) metal
12		surfaces. Chemical Physics 2005, 319 (1-3): 178-184.
13	16.	Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK. Electrolysis of water on oxide
14		surfaces. J Electroanal Chem 2007, 607(1-2): 83-89.
15	17.	Liu P, Chen B, Liang C, Yao W, Cui Y, Hu S, et al. Tip-Enhanced Electric Field: A
16		New Mechanism Promoting Mass Transfer in Oxygen Evolution Reactions. Adv.
17		<i>Mater</i> . 2021, 33 (9): 2007377.
18	18.	Liang C, Zou P, Nairan A, Zhang Y, Liu J, Liu K, et al. Exceptional performance of
19		hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for
20		large current density water splitting. Energy Environ. Sci. 2020, 13(1): 86-95.
21	19.	Kou T, Wang S, Hauser JL, Chen M, Oliver SRJ, Ye Y, et al. Ni Foam-Supported
22		Fe-Doped β -Ni(OH)2 Nanosheets Show Ultralow Overpotential for Oxygen
23		Evolution Reaction. ACS Energy Lett. 2019, 4(3): 622-628.
24	20.	Niu S, Jiang W-J, Wei Z, Tang T, Ma J, Hu J-S, et al. Se-Doping Activates FeOOH
25		for Cost-Effective and Efficient Electrochemical Water Oxidation. J. Am. Chem.
26		Soc. 2019, 141(17): 7005-7013.
27	21.	Zhang N, Feng X, Rao D, Deng X, Cai L, Qiu B, et al. Lattice oxygen activation

1		enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun.
2		2020, 11 (1): 4066.
3	22.	Wang XP, Wu HJ, Xi SB, Lee WSV, Zhang J, Wu ZH, et al. Strain stabilized nickel
4		hydroxide nanoribbons for efficient water splitting. Energy Environ. Sci. 2020,
5		13 (1): 229-237.
6	23.	Zhang SL, Guan BY, Lu XF, Xi S, Du Y, Lou XW. Metal Atom-Doped Co 3 O 4
7		Hierarchical Nanoplates for Electrocatalytic Oxygen Evolution. Adv. Mater. 2020,
8		32 (31): 2002235.
9	24.	Zhang J, Xu Q, Hu Y, Jiang H, Li C. Selenium vacancy triggered atomic
10		disordering of Co _{0.85} Se nanoparticles towards a highly-active electrocatalyst for
11		water oxidation. Chem. Commun. 2020, 56(92): 14451-14454.
12	25.	Huan TN, Rousse G, Zanna S, Lucas IT, Xu X, Menguy N, et al. A Dendritic
13		Nanostructured Copper Oxide Electrocatalyst for the Oxygen Evolution Reaction.
14		Angew. Chem. Int. Ed. 2017, 56(17): 4792-4796.
15	26.	Yu J, Cheng G, Luo W. Hierarchical NiFeP microflowers directly grown on Ni
16		foam for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A 2017,
17		5 (22): 11229-11235.
18	27.	Yang L, Guo Z, Huang J, Xi Y, Gao R, Su G, et al. Vertical Growth of 2D
19		Amorphous FePO 4 Nanosheet on Ni Foam: Outer and Inner Structural Design for
20		Superior Water Splitting. Adv. Mater. 2017, 29(46): 1704574.
21	28.	Xi W, Yan G, Lang Z, Ma Y, Tan H, Zhu H, et al. Oxygen-Doped Nickel Iron
22		Phosphide Nanocube Arrays Grown on Ni Foam for Oxygen Evolution
23		Electrocatalysis. Small 2018, 14(42): 1802204.
24	29.	Ming F, Liang H, Shi H, Xu X, Mei G, Wang Z. MOF-derived Co-doped nickel
25		selenide/C electrocatalysts supported on Ni foam for overall water splitting. J.
26		Mater. Chem. A 2016, 4(39): 15148-15155.
27		

1	30.	Li J, Wei G, Zhu Y, Xi Y, Pan X, Ji Y, et al. Hierarchical NiCoP nanocone arrays
2		supported on Ni foam as an efficient and stable bifunctional electrocatalyst for
3		overall water splitting. J. Mater. Chem. A 2017, 5(28): 14828-14837.
4	31.	Sial MAZG, Lin H, Wang X. Microporous 2D NiCoFe phosphate nanosheets
5		supported on Ni foam for efficient overall water splitting in alkaline media.
6		Nanoscale 2018, 10(27): 12975-12980.
7	32.	Zai SF, Dong AQ, Li J, Wen Z, Yang CC, Jiang Q. Low-crystallinity mesoporous
8		NiGaFe hydroxide nanosheets on macroporous Ni foam for high-efficiency oxygen
9		evolution electrocatalysis. J. Mater. Chem. A 2021, 9(10): 6223-6231.
10	33.	Xiao C, Li Y, Lu X, Zhao C. Bifunctional Porous NiFe/NiCo2O4/Ni Foam
11		Electrodes with Triple Hierarchy and Double Synergies for Efficient Whole Cell
12		Water Splitting. Adv. Funct. Mater. 2016, 26(20): 3515-3523.
13	34.	Hu C, Zhang L, Zhao Z-J, Li A, Chang X, Gong J. Synergism of Geometric
14		Construction and Electronic Regulation: 3D Se-(NiCo)Sx/(OH)xNanosheets for
15		Highly Efficient Overall Water Splitting. Adv. Mater. 2018, 30(12): 1705538.
16	35.	Zou X, Liu Y, Li G-D, Wu Y, Liu D-P, Li W, et al. Ultrafast Formation of
17		Amorphous Bimetallic Hydroxide Films on 3D Conductive Sulfide Nanoarrays for
18		Large-Current-Density Oxygen Evolution Electrocatalysis. Adv. Mater. 2017,
19		29 (22): 1700404.
20	36.	Jia X, Zhao Y, Chen G, Shang L, Shi R, Kang X, et al. Ni ₃ FeN Nanoparticles
21		Derived from Ultrathin NiFe-Layered Double Hydroxide Nanosheets: An Efficient
22		Overall Water Splitting Electrocatalyst. Advanced Energy Materials 2016, 6(10):
23		1502585.
24	37.	Li H, Chen S, Zhang Y, Zhang Q, Jia X, Zhang Q, et al. Systematic design of
25		superaerophobic nanotube-array electrode comprised of transition-metal sulfides
26		for overall water splitting. Nat. Commun. 2018, 9(1): 2452.
27	38.	Qi Y, Wang Q, Wang X, Liu Z, Zhao X, Yang E. Self-supported Co-doped FeNi

1		carbonate hydroxide nanosheet array as a highly efficient electrocatalyst towards
2		the oxygen evolution reaction in an alkaline solution. Nanoscale 2019, 11(22):
3		10595-10602.
4	39.	Zhong D, Zhang L, Li C, Li D, Wei C, Zhao Q, et al. Nanostructured NiFe
5		(oxy)hydroxide with easily oxidized Ni towards efficient oxygen evolution
6		reactions. J. Mater. Chem. A 2018, 6(35): 16810-16817.
7	40.	Zhang B, Wang L, Cao Z, Kozlov SM, García De Arquer FP, Dinh CT, et al. High-
8		valence metals improve oxygen evolution reaction performance by modulating 3d
9		metal oxidation cycle energetics. Nat. Catal. 2020, 3(12): 985-992.
10	41.	Zhou H, Yu F, Sun J, He R, Chen S, Chu C-W, et al. Highly active catalyst derived
11		from a 3D foam of $Fe(PO_3)_2Ni_2P$ for extremely efficient water oxidation. <i>Proc.</i>
12		Natl. Acad. Sci. 2017, 114(22): 5607-5611.
13	42.	Xu X, Song F, Hu X. A nickel iron diselenide-derived efficient oxygen-evolution
14		catalyst. Nat. Commun. 2016, 7(1): 12324.
15	43.	Yu L, Zhu Q, Song S, McElhenny B, Wang D, Wu C, et al. Non-noble metal-nitride
16		based electrocatalysts for high-performance alkaline seawater electrolysis. Nat.
17		<i>Commun.</i> 2019, 10 (1): 5106.
18	44.	Zhai P, Zhang Y, Wu Y, Gao J, Zhang B, Cao S, et al. Engineering active sites on
19		hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust
20		overall water splitting. Nat. Commun. 2020, 11(1): 5462.
21	45.	Li W, Li F, Yang H, Wu X, Zhang P, Shan Y, et al. A bio-inspired coordination
22		polymer as outstanding water oxidation catalyst via second coordination sphere
23		engineering. Nat. Commun. 2019, 10(1): 5074.
24	46.	Wang D, Li Q, Han C, Lu Q, Xing Z, Yang X. Atomic and electronic modulation of
25		self-supported nickel-vanadium layered double hydroxide to accelerate water
26		splitting kinetics. Nat. Commun. 2019, 10(1): 3899.
27	47.	Zhang J, Jiang WJ, Niu S, Zhang H, Liu J, Li H, et al. Organic Small Molecule

Activates Transition Metal Foam for Efficient Oxygen Evolution Reaction. *Adv. Mater.* 2020, **32**(11): 1906015.
 48. Liu Y, Liang X, Gu L, Zhang Y, Li G-D, Zou X, *et al.* Corrosion engineering
 towards efficient oxygen evolution electrodes with stable catalytic activity for over
 6000 hours. *Nat. Commun.* 2018, **9**(1): 2609.