Supporting Information

Improving the Optoelectronic Properties of Single-Crystal Antimony Sulfide Rods through Simultaneous Defect Suppression and Surface Cleaning

Xiaohui Liu^a, Shunhong Dong^a, Xiaolu Zheng^a, Yicheng Zhang^b, Yuan Yao^c, Weibin Zhang^a, Zhiyong Liu^a, Ting Zhu^a, Hong-En Wang^{a,*}

^a College of Physics and Electronic Information, Yunnan Key Laboratory of Optoelectronic Information Technology, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China.

^b College of Chemistry and Chemical Engineering, Yunnan Normal University, 650500 Kunming, China.

^c Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

* Correspondence: hongen.wang@outlook.com; hongen.wang@ynnu.edu.cn

Figure S1. A representative low-magnification SEM image of pristine Sb₂S₃ (p-Sb₂S₃) rods obtained by hydrothermal reaction at 180 ℃ for 24 h.

Figure S2. (a, c) SEM images and (b, d) corresponding size distribution histograms of the Sb_2S_3 rods prepared by hydrothermal reactions at 180 ℃ for (a, b) 8 h and (c, d) 16 h, respectively.

Figure S3. SEM images of the Sb_2S_3 rods hydrothermally synthesized at (a) 160 °C, (b) 180 °C,

and (c) 200 $\rm{^oC}$ for 24 h, respectively.

Figure S4. Rietveld refinement analysis for the XRD pattern of the Sb₂S₃-H₂/Ar sample.

Figure S5. XRD pattern of the hydrothermally prepared pristine Sb_2S_3 rods (p- Sb_2S_3) containing trace sulfur impurity.

Figure S6. XRD pattern of the hydrothermally prepared pristine Sb_2S_3 rods followed by annealing in nitrogen $(Sb_2S_3-N_2)$ containing residual sulfur impurity.

Figure S7. Adsorption configurations of one (a) S_8 and (b) S_2 molecule on Sb_2S_3 (010) surface after geometry optimization, leading to an adsorption energy of -0.69 and -1.22 eV, respectively. The S_8 (left) and S_2 (right) molecules have been marked by dotted ellipses for clarity.

Figure S8. EPR spectra of the (a) $p-Sb_2S_3$, (b) $Sb_2S_3-N_2$, and (c) $Sb_2S_3-H_2/Ar$ samples.

Figure S9. Linear sweep Raman spectra of (b, right) a single $Sb_2S_3-H_2/Ar$ rod at several different

positions (a, left).

Figure S10. Survey XPS spectrum of the Sb₂S₃-H₂/Ar sample.

Figure S11. High-resolution XPS spectra of (a) S $2p$ and (b) Sb 3*d* of p-Sb₂S₃ and Sb₂S₃-H₂/Ar samples.

Figure S12. Current voltage (*I-V*) curves of the Sb₂S₃-H₂/Ar rod photodetector devices measured under dark and illumination with a 560 nm monochromatic light at a light intensity of 110 μ W/cm², respectively.

Figure S13. *I-V* curves of the Sb₂S₃-H₂/Ar rod photodetector device under dark and illumination of 110 μ W/cm², respectively. It is noted that the photocurrent of the device after storage in air for 1 week decreases slightly compared to the fresh one.