Introducing large-radius elements into layered perovskite for

low-voltage lithium storage

Xiao Li^a, Diming Xu^a, Di Zhou^{a*}, Hu Nan^a, Shengzhao Pang^b, Moustafa Adel Darwish^c, Tao Zhou^d, Shi-Kuan Sun^e.

^aMultifunctional Materials and Structures, Key Laboratory of the Ministry of Education

& International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China

^bUnmanned System Research Institute, Northwestern Polytechnical University, Xi'an,

710072, PR China

^cPhysics Department, Faculty of Science, Tanta University, Al-Geish st., Tanta 31527, Egypt

^dSchool of Electronic and Information Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China

eSchool of Material Science and Energy Engineering, Foshan University, Foshan, Guangdong, 528000, PR China

*E-mail: zhoudi1220@xjtu.edu.cn

Table S1Pa	ble S1 Parameters of LiSmTiO ₄ .									
	<i>a</i> (Å)	<i>b (</i> Å)	c (Å)	$\alpha/\beta/\gamma$						
LiSmTiO ₄	11.557961	5.350223	5.345824	90 °						

Table S2 Fractional atomic parameters of LiSmTiO ₄ with <i>Pbcm</i> space group.									
atom	sit	e	x	У	Z	occupancy			
Li	4 <i>d</i>		0.522327	0.522327	0.000000	1			
Sm	4 <i>d</i>		0.877723	0.012580	0.250000	1			
Ti	4 <i>d</i>		0.298715	0.005600	0.250000	1			
01	4 <i>c</i>		0.260215	0.250000	0.000000	1			
02	4 <i>c</i>		0.734028	0.250000	0.000000	1			
03	4 <i>d</i>		0.099685	0.922669	0.250000	1			
04	4 <i>d</i>		0.475755	0.080721	0.250000	1			

Figure S1. Projected density of states (PDOS) for pristine LSTO.

The Vienna Ab-initio Simulation Package (VASP) package with density functional theory (DFT) was used for the calculations. The electronic exchange-correlation energy was determined using the Perdew–Burke–Ernzerhof functional within the generalized gradient approximation. The cutoff energy was set to 400 eV, and the convergence criteria were 1.0×10^{-3} eV for energy and 0.01 eV Å⁻¹ for stress. The projected density of states (PDOS) of LSTO was calculated using a Monkhorst–Pack grid of $4 \times 8 \times 8$ k-points. The crystal structure of LSTO was optimized using a bulk structure consisting of four LSTO units ([LSTO]₄).

Figure S2. Electrochemical performance of $Li_4Ti_5O_{12}/Li$ half cell. (a) CV curves measured at a sweep rate of 0.2 mV s⁻¹. (b) the first five galvanostatic discharge and charge curves of the $Li_4Ti_5O_{12}$ in a half-cel configuration. (c,d) Galvanostatic discharge and charge curves from 0.1C up to 10C and corresponding rate performance summary based on galvanostatic capacity. (e) The cycle performance of $Li_4Ti_5O_{12}$ at 1C.

Figure S3. The corresponding rate performance summary based on galvanostatic capacity.

Figure S4. Electrochemical performance of the LiFePO₄|| Li₄Ti₅O₁₂ full cell. (a) Charge-discharge curves at various current rates from 0.2C to 2C from 1.0 V to 2.5 V. (b) The corresponding rate performance summary based on galvanostatic capacity. (c) The cycling stability at 1C over 100 cycles and corresponding Coulombic efficiency of the LiFePO₄|| Li₄Ti₅O₁₂ full cell.

Figure S5. EDS mapping of the electrode after 10 cycles.

Figure S6. EDS mapping of the electrode after 100 cycles.