Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Wide-bandgap perovskites for multijunction solar cells: improvement of crystalline quality of Cs_{0.1}FA_{0.9}PbI_{1.4}Br_{1.6} by using lead thiocyanate

Thuy Thi Nguyen^{1,3+}, Jihyun Kim²⁺, Yeon Soo Kim¹, Bich Phuong Nguyen¹ and William Jo^{1,2*}

¹New and Renewable Energy Research Center, Ewha Womans University, Seoul, 03760, Korea ²Department of Physics, Ewha Womans University, Seoul 03760, Korea

³Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 100000,

Vietnam

E-mail: wmjo@ewha.ac.kr

*Corresponding author

⁺These authors equally contributed to this work.

Figure S1. (a) Schematic diagram of perovskite grain growth during annealing by $Pb(SCN)_2$ concentrations. (b) Relations between the nucleation and growth rate and the concentration of growth species. (c) Comparison of critical radius and free energy difference.

Figure S2. (a-e) Surface topography images, (a-1-e-1) local current maps, (f-j) line profiles, and (k-o) statistical characterization of the local current by c-AFM for the GBs and IGs in the Pb(SCN)₂-added perovskite thin films.

Figure S3. KPFM results of the $Cs_{0.1}FA_{0.9}PbI_{1.4}Br_{1.6}$ thin films: (a-e) topography, (a-1-e-1) surface potential maps, (f-j) statistical characterization, and (k-o) work function determined from the surface potential maps.