Supporting Information

Defect Engineering of Solution-Processed ZnO:Li Window Layer Towards High-Efficiency and Low-Cost Kesterite Photovoltaics

Qian Xiao^a, Dongxing Kou^a*, Wenhui Zhou^a, Zhengji Zhou^a, Shengjie Yuan^a, Yafang Qi^a, Yuena Meng^a, Litao Han^a, Zhi Zheng^b, and Sixin Wu^a*

^a Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.

^b Inst Surface Micro & Nano Mat, Coll Adv Mat & Energy, Key Lab Micronano Energy Storage & Convers Mat He, Xuchang University, Xuchang, Henan 461000, China.

E-mail: koudongxing@henu.edu.cn; wusixin@henu.edu.cn

Figure S1 Statistical box diagrams of J-V curves, J_{sc} , V_{oc} , FF and PCE for CZTSSe solar cells with different ZnO NPs solution concentration.

Figure S2 Statistical box diagrams of J_{sc} , V_{oc} , FF and PCE for CZTSSe solar cells at different ZnO NPs window layer annealing temperature.

Figure S3. The SEM top-view images of the (a) sputtered i-ZnO/CdS/CZTSSe stack and (d) ZnO NPs/CdS/CZTSSe stack. The surface EDS element mapping of (b) Zn and (c) O for i-ZnO and (e) Zn and (f) O for ZnO NPs.

Figure S4 The resistivity ρ of sputtered i-ZnO and ZnO:Li NPs films with different Li content on soda-lime glass.

Figure S5 (a)-(b) are the shunt resistance and (c)-(d) are the series resistance of CZTSSe solar cells using ZnO NPs and ZnO:Li NPs window layer, respectively.

Figure S6. (a) EQE curves of CZTSSe solar cells using ZnO NPs and ZnO:Li NPs window layer. (b) The EQE difference (Δ EQE) of the CZTSSe solar cells before and after 2% Li doping.

Figure S7 (a) The *J-V* curves of CZTSSe solar cells with 2% Li doping ZnO layer before and after 60 days storage. (b) The efficiency stability within 60 days for the champion CZTSSe device with 2% Li doping ZnO layer.

Figure S8 XRD of the pristine ZnO NPs and 2% ZnO:Li NPs films deposited on ITO glass.

$$q = \frac{2\pi}{d} = \frac{4\pi \sin\theta}{\lambda}$$
$$\frac{1}{d_{hkl}^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$$

 λ =1.5406 nm, a, b and c are cell parameters, (hkl) is the crystal face index, *d* is the interplanar spacing and 2θ is the diffraction angle. The unit cell parameters of ZnO wurtzite follow the principle that a=b \neq c, α = β =90°, γ =120°. For the main peak (002) plane, the lattice parameters of pristine ZnO and ZnO:Li NPs are evaluated to be a=b=3.4216, c=5.4547 and a=b=3.4340, c=5.4830, respectively.

Figure S9 Li_{1s} of XPS for the pristine ZnO NPs and 2% ZnO:Li NPs films deposited on glass.

Figure S10. EPR of sputtered i-ZnO and solution-processed ZnO NPs films.

Figure S11 SEM cross-section morphologies of the (a) i-ZnO, (b) one layer of ZnO NPs films, (c) two layers of ZnO NPs films and (d) three layers of ZnO NPs films deposited on soda-lime glass.

Figure S12 Transmittance spectrum of the sputtered ZnO, pristine ZnO NPs (1, 2, 3 layers) and ZnO:Li NPs (2 layers) films deposited on soda-lime glass.

Figure S13 EIS Nyquist diagrams for the CZTSSe solar cells with i-ZnO and ZnO NPs window layers measured under -0.45 V.

Figure S14 PL of pristine ZnO NPs and 2% ZnO:Li NPs films.

Figure S15 Two dimensional atomic force microscopy images of ZnO NPs/CdS /CZTSSe stack and ZnO:Li NPs/CdS/CZTSSe stack.

Figure S16 Cross-section scanning morphology of EBIC for the CZTSSe solar cells using ZnO NPs and ZnO:Li NPs window layer.

Figure S17 (a) The temperature-dependent ideal factor A of CZTSSe solar cells with ZnO NPs and 2% Li doping ZnO layers with the range of 350-100 K under dark condition.