Effect of solvent on the crystal phase, morphology, and sodium storage performance of FeSe₂

Manman Ren^{a*#}, Haoting Zang^{a#}, Shilei Cao^a, Hongling Guo^a, Jihui Zhang^a,

Weiliang Liu^a, Jinshui Yao^a, Xu Zhang^{b*}, Zhen Zhou^b

^a School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China

^b Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE²), School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.

Materials characterization

XRD pattern was conducted on SHMADZUXRD-6100AS with Cu K α X-ray radiation (λ =0.15406 nm). The chemical composition of the FeSe₂ (ESCALAB 250 X-ray spectrometer with Al K α X-ray source) was analyzed by X-ray photoelectron spectroscopy (XPS). The morphology and microstructure details of the samples was investigated by Scanning electron microscopy (SEM, ZEISS SUPRATM 55) and transmission electron microscopy (TEM, FEI-TECNAI-G20). Raman spectra was characterized by LabRam HR confocal laser microRaman spectrometer. Brunauer-Emmet-Teller (BET) surface areas were characterized by nitrogen adsorption with Autosorb-iQ specific surface area instrument.

Electrochemical measurements

Test electrodes were composed of $FeSe_2$ (80%), acetylene black (10%), and polyvinylidene fluoride (10%). Sodium metal and microporous glass fiber were used as the counter electrodes and separator. The electrolyte was 1.0 M NaSO₃CF₃ dissolved in the diglyme. Galvanostatic charge/discharge tests of 0.3-3.0 V (vs. Na⁺/Na) were carried out on the Neware battery testing system. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were studied by CHI760 E electrochemical workstation. The CV curves at different scan rates were tested in the potential range of 0.3-3.0 V (vs. Na⁺/Na). EIS was studied in the frequency range of 100 -0.01 Hz with an amplitude of 5 mV. The galvanostatic discharge/charge tests and GITT were conducted on NEWARE battery test systems, with a potential range of $0.3\sim3.0$ V (vs. Na⁺/Na).

Computational methods

The spin-polarized density functional theory (DFT) calculations were performed using Vienna ab initio simulation package (VASP) with the plane-wave techniques.¹ The Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) was adopted to describe the exchange-correlation interaction.² A kinetic cutoff energy of 450 eV was used for the plane-wave basis set. In order to accurately deal with the long-rang van der Waals (vdW) interactions, the zero damping DFT-D3 method of Grimme was used.³ A vacuum layer of 20 Å was inserted to eliminate the artificial interactions between the periodically repeated layers. A Monkhorst-Pach scheme with a *K*-point mesh of 0.03 1/Å density was used in the computations.⁴ According to our experiments, FeSe₂, (101) and (110) surfaces were built. For the computations of FeSe₂ surfaces, the lower one-third atoms were fixed and other atoms were fully relaxed. The adsorption energy (E_{ads}) of Na atom on the FeSe₂ surface was calculated from the equation:

$$E_{\rm ads} = E_{\rm Na-surface} - E_{\rm surface} - E_{\rm Na}$$

in which $E_{\text{Na-surface}}$ is the total energy of Na atom adsorbed on the FeSe₂ surface and E_{surface} and E_{Na} are the energy of FeSe₂ surface and Na atom in Na metal bulk, respectively. The Na migration pathways on the FeSe₂ surfaces and corresponding energy barriers were calculated based on the climbing-image nudged elastic band (CI-NEB) method.⁵

Fig. S1 The ratio of 110/101 crystal planes in FeSe₂/rGO-EG

Fig. S2 TEM images of Fe₃O₄/rGO

Fig. S3 SEM images of FeSe₂/rGO-EG at different solvothermal reaction time (a) 5h

and (b) 15h

Fig. S4 CV profiles of the FeSe $_2$ /rGO-W electrode at 0.1 mV s⁻¹

Fig. S5 Long cycling performance of the $FeSe_2/rGO-EG$ electrode at 1 A g⁻¹ under different situations.

Fig. S6 (a, b) Optimized atomic configuration of top and side view of (110) plane; (c,d) Optimized atomic configuration of top and side view of (101) plane; (e) Optimized atomic cofiguration of FeSe₂.

Fig. S7 Open circuit voltage of the FeSe₂/rGO-EG and FeSe₂/rGO-W electrodes

Fig. S8 Capacitive contribution to the total capacity of the FeSe₂/rGO-W electrodes at various scan rates

Fig. S9 Diffusion-controlled and capacitive contribution of the $FeSe_2/rGO-EG$ electrodes at 0.4 mV s⁻¹ (a), 0.6 mV s⁻¹ (b), 0.8 mV s⁻¹ (c), 1.0 mV s⁻¹ (d).

Fig. S10 Linear fits in low-frequency regions of the $FeSe_2/rGO-EG$ and $FeSe_2/rGO-W$

Samples	Current	Cycle	Capacity	Solvent	Ref
	density	number	(mAh/g)		
	(A /g)	(n)			
FeSe ₂ @C	1.0	200	359	H ₂ O / isopropyl	6
				alcohol	
O-FeSe ₂ NSs	1.0	700	268	Oleylamine	7
FeSe2@C/NG	0.5	160	350	H ₂ O	8
FeSe2@GC-	1.0	150	393	DMF	9
rGO					
FeSe ₂ -HGCNS	0.5	100	425	DMF	10
FeSe ₂ NPs/CB	0.8	300	450	Oleylamine /1-	11
				octadecene	
FCSe@C@void	0.4	400	282	H ₂ O	12
@C					
FeSe _x -rGO	1.0	1000	311	H ₂ O	13
FeSe ₂ /rGO-EG	1.0	1000	400	Ethylene glycol	This work

Table S1 Comparison of the electrochemical performances of the $FeSe_2/rGO-EG$ and other $FeSe_2$ -based anode material.

References:

- 1. G. Kresse and J. Furthmüller, *Phys Rev B*, 1996, **54**, 11169-11186.
- 2. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys Rev Lett*, 1996, 77, 3865-3868.
- 3. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J Chem Phys*, 2010, **132**, 154104.
- 4. H. J. Monkhorst and J. D. Pack, *Phys Rev B*, 1976, **13**, 5188-5192.
- 5. G. Henkelman and H. Jónsson, *J Chem Phys*, 2000, **113**, 9978-9985.
- T. Wang, W. Guo, G. Wang, H. Wang, J. Bai and B. Wang, *Journal of Alloys and Compounds*, 2020, 834. 155265
- 7. Z.-Q. Wang, B. Zeng, D. Zhou, L. Tai, X.-D. Liu and W.-M. Lau, *Chemical Engineering Journal*, 2022, **428**. 132637
- 8. S. H. Yang, S. K. Park and Y. C. Kang, *International Journal of Energy Research*, 2021, **45**, 20909-20920.
- 9. J. S. Cho, J. K. Lee and Y. C. Kang, *Sci Rep*, 2016, **6**, 23699.
- J.-S. Park, S. Y. Jeong, K. M. Jeon, Y. C. Kang and J. S. Cho, *Chemical Engineering Journal*, 2018, **339**, 97-107.
- F. Zhao, S. Shen, L. Cheng, L. Ma, J. Zhou, H. Ye, N. Han, T. Wu, Y. Li and J. Lu, *Nano Lett*, 2017, **17**, 4137-4142.
- 12. J. Wang, B. Wang, H. Sun, G. Wang, J. Bai and H. Wang, *Energy Storage Materials*, 2022, 46, 394-405.
- 13. G. D. Park, J. S. Cho, J. K. Lee and Y. C. Kang, *Sci Rep*, 2016, 6, 22432.