Supporting Information

Solvents dramatically influence the atomic composition and catalytic properties of $Ti_3C_2T_x$ MXenes

Katarina A. Novčić, ^a Christian Iffelsberger, ^a Mario Palacios Corella,^a Martin Pumera ^{*a,b,c,d}

^a Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno

University of Technology, Purkyňova 656/123, 61200 Brno, Czech Republic

^b Faculty of Electrical Engineering and Computer Science, VSB - Technical University of

Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic

^c Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan

^d Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea

*E-mail: pumera.research@gmail.com

Figure S1. The electrochemical characterization of the bare electrodes. Linear sweep voltammograms for the water, EtOH, IPA, and DMF solvents (without any material suport) drop-casted on the bare GCE.

Figure S2. Tafel analysis of the $Ti_3C_2T_x$ MXene samples. (A) Tafel slopes for the MXene samples prepared from the fresh and (B) aged suspensions.

Solvent	Boiling point / °C	Viscosity / mPa s (at 25 ºC)	Dielectric constant	*Density / g ml ⁻¹	Electrical conductivity / μS cm ⁻¹	Ref.
Water	100.0	1.00	8.0	1.00	0.05	[1], [2]
EtOH	78.5	1.04	24.55	0.78	0.50	[1], [2]
IPA	82.4	2.05	18	0.78	0.06	[1], [2]
DMF	153.0	0.92	38	0.94	1.60	[3], [4]

Table S1. Table showing the properties of water, EtOH, IPA, and DMF.

*Data is taken from the safety data sheet provided by solvent producer

Figure S3. Optical characterization of the surface roughness of the $Ti_3C_2T_x$ MXene samples by confocal laser scanning microsocpy (CLSM) with 20x lenses. The false-color CLSM images with indicated line roughness measurements (black lines) of V-vertical and H-horizontal lines on (A) water, (B) EtOH, (C) IPA, and (D) DMF $Ti_3C_2T_x$ MXene samples.

Figure S4. Scanning electron micrographs (black & white) and EDS maps for the elemental distribution of Ti, C and O on the $Ti_3C_2T_x$ MXene samples prepared from fresh and aged water, EtOH, IPA, and DMF suspensions. The scale is 2 μ m.

Table S2. Table showing the EDS atomic percentages in the $Ti_3C_2T_x$ MXene samples prepared from the fresh and aged water, EtOH, IPA, and DMF suspensions.

	MXene-Water		MXen	e-EtOH	MXe	ne-IPA	MXene-DMF		
	fresh	aged	fresh	aged	fresh	aged	fresh	aged	
Ti	24.2	9.5	9.9	17.3	12.8	12.1	10.7	7.4	
С	23.0	18.0	33.8	31.8	27.6	26.2	33.6	32.7	
0	24.4	26.3	8.1	18.0	9.4	11.8	9.7	6.5	
F	26.4	4.5	6.1	16.4	11.5	12.5	10.3	5.1	

Figure S5. X-ray photoelectron spectroscopy (XPS) study of the survey spectra of the $Ti_3C_2T_x$ MXene powder with the atomic percentages of the constructed elements of Ti, C, O and F.

Table	S3 .	Table	showing	the	XPS	atomic	percentages	in	the	Water,	EtOH,	IPA	and	DMF
Ti ₃ C ₂ T	$f_{\rm x}$ M	Xene sa	amples.											

	Water		Et	OH	IP	Ά	DMF		
	fresh	aged	fresh	aged	fresh	aged	fresh	aged	
O 1s	28.41	40.27	22.61	22.94	20.70	20.67	24.09	20.38	
Ti 2p	16.16	16.94	18.15	18.95	19.36	17.24	18.88	19.56	
C 1s	45.50	36.81	41.67	42.16	42.54	47.96	35.69	46.07	
F 1s	9.93	5.98	17.57	15.95	17.40	14.13	20.17	12.78	
N 1s	/	/	/	/	/	/	1.17	1.21	

References:

1. P. Atkins, J. de Paula, Atkin's Physical Chemistry, 10th Edition, Oxford University Press 2014.

2. T. Dong, E. P. Knoshaug, P.T. Pienkos and L. M. L. Laurens, Lipid Recovery from Wet Oleaginous Microbial Biomass for Biofuel Production: A Critical Review, Applied Energy 2016, 177, 879-895.

3. B. Shi, X. X. He, W.Wu, C. L. Hsien, Economic and Risk Analyses of an Industrial N,N-Dimethylformide Recovery Process, Chem. Ing. Technol. 2019, 42, 5, 1-12.

4. W. A. Hammad, N. H. El-Hammamy, M. H. Morshidy, Kholood Alkamis, M. A. Darweesh, Electrical conductivity and thermodynamic studies on sodium dimethyldithiocarbamate in non-aqueous solvents dimethylformamide (DMF), at different temperatures, *Scientific Reports* **2022**, 12, 15634.