Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Yumeng Li^a, Yingmin Jin^{a,}, Xin Zong^a, Xuebai Zhang^a, Guanshu Li^b, Yueping Xiong^{a,*}* ^a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and chemical engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China

^b Key Laboratory of Science and Technology on Material Performance Evaluating in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China

*E-mail address: jymjinyingmin@163.com (Y. Jin) ypxiong@hit.edu.cn (Y. Xiong)

Fig. S1. the corresponding EDS mappings of (a) Bi, (b) In, (C) O, and (d) Mix for Bi_5In_5 oxide precursor NFs.

Fig. S2. (a) SEM image and (b, c, and d) the corresponding EDS mappings of the Bi oxide precursor NFs.

Fig. S3. (a) SEM image and (b, c, d and e) the corresponding EDS mappings of the Bi_7In_3 oxide precursor NFs.

Fig. S4. (a) SEM image and (b, c, d and e) the corresponding EDS mappings of the Bi_3In_7 oxide precursor NFs.

Fig. S5. (a) SEM image and (b, c, and d) the corresponding EDS mappings of the In oxide precursor NFs.

Fig. S6. the electrochemical reducing current-voltage curve.

Fig. S7. EDS of Bi5In5 NFs.

Fig. S8. (a) SEM image and (b, c, and d) the corresponding EDS and mappings of the Bi NFs.

Fig. S9. (a) SEM image and (b, c, d and e) the corresponding EDS and mappings of the Bi_7In_3 NFs.

Fig. S10. (a) SEM image and (b, c, d and e) the corresponding EDS and mappings of the Bi_3In_7 NFs.

Fig. S11. (a) SEM image and (b, c, d and e) the corresponding EDS and mappings of the Bi_3In_7 NFs.

Fig. S12. XRD patterns of the oxide precursor NFs.

Fig. S13. HRTEM of Bi.

Fig. S14. HRTEM of Bi₇In₃.

Fig. S15. HRTEM of Bi₅In₅.

Fig. S16. HRTEM of Bi₃In₇.

Fig. S17. HRTEM of In.

Fig. S18. full range XPS spectrum of the Bi_5In_5 NFs.

Fig. S19. ¹H NMR spectra of the Bi_5In_5 NFs.

Fig. S20. FE for HCOOH, H2, CO at different potentials on Bi NF.

Fig. S21. FE for HCOOH, H2, CO at different potentials on Bi_7In_3 NF.

Fig. S22. FE for HCOOH, H2, CO at different potentials on Bi_3In_7 NF.

Fig. S23. FE for HCOOH, H2, CO at different potentials on In NF.

Fig. S24. Partial current densities of HCOOH on $Bi_x In_y$ NFs.

Fig. S25. Catalytic performance comparison with the recently reported catalysts.

Fig. S26. CV curves of the (a) Bi NFs, (b) Bi_7In_3 NFs, (c) Bi_5In_5 NPs, (d) Bi_3In_7 NPs, and (e) In NFs.

Fig. S27. The Tafel slopes of different catalysts.

Fig. S28. Density of states for Bi atoms in InBi.

Fig. S29. *OCHO intermediate adsorption sites of (a) In-In, (b) Bi-Bi, (c) In-Bi.

Fig. S30. Three-view Picture of DFT configurations for CO2*, *OCHO, and *HCOOH on the InBi (200) surface.

Fig. S31. Three-view Picture of DFT configurations for CO2*, *OCHO, and *HCOOH on the $BiIn_2$ (110) surface.

Fig. S32. Three-view Picture of DFT configurations for CO2*, *OCHO, and *HCOOH on the Bi (003) surface.

Fig. S33. Three-view Picture of DFT configurations for CO2*, *OCHO, and *HCOOH on the In (112) surface.

	5	
Codo —	Atomic % (at?	%)
Code —	Bi	In
Bi	100	0
Bi ₇ In ₃	67.38	32.62
Bi ₅ In ₅	51.45	48.55
Bi ₃ In ₇	31.56	68.44
In	100	0

Table S1. EDS elemental analysis of In_xBi_y NFs.

	Cada -	Atomic % (at%)	
Code	Code –	Bi	In
	Bi ₇ In ₃	70.59	29.41
	Bi ₅ In ₅	50.98	49.02
	Bi ₃ In ₇	31.37	68.63

Table S2. ICP analysis of In_xBi_y NFs.

	In-In	Bi-Bi	In-Bi
Final enthalpy (eV)	-44004.24994	-44004.22351	-44004.30767

Table S3. The enthalpy of In-In, Bi-Bi, and In-Bi adsorption sites with *OCHO intermediate.

IIIDI				
Free energy (eV)	*CO ₂	*OCHO	*HCOOH	НСООН
Bi	-16899.39653	-16914.99642	-16931.08746	-1069.496642
In	-71253.59698	-71269.74023	-71285.39774	-1069.496642
BiIn ₂	-79179.30407	-79195.26181	-79211.07316	-1069.496642
InBi	-44060.45862	-44076.43317	-44092.26833	-1069.496642

Table S4. Calculated Gibbs free energy results of the intermediates on Bi, In, BiIn₂, InBi