Supporting Information

Thin carbon layer covered Co4N cubes encapsulated in N-doped porous carbon nanocages as tri-functional catalysts with enhanced charge-transfer efficiency for Zn-air battery and overall water-splitting

Guanghui Zhang^a , Lingxue Zhao^a , Guangda Li^a , Liqiang Xu*^b*

^aSchool of Materials Science and Engineering, Qilu University of Technology

(Shandong Academy of Sciences), Jinan 250353, China

^b Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School

of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

Experimental Section

Synthesis of Co4N/C

 $0.1g$ Co(OH)₂ and 5 mL above mixed solution were added into 25 mL of deionized water and stirred for 24 h. The obtained product $Co_3[Co(CN)_6]_2/C-1$ was washed with deionized water for several times, and dried at 60 °C for 3 h. Finally, 0.1 g $Co_3[Co(CN)_6]_2/C$ was annealed at 700 °C for 2 h with a heating rate of 5 °C min⁻¹ under N₂ atmosphere to obtain Co₄N/C.

Synthesis of CoNC

 $0.1g \text{Co(OH)}_2$, 0.1 mmol citric acid and 0.2 mmol $K_3[\text{Co(CN)}_6]$ were added into 25 mL of deionized water and stirred for 24 h. The obtained product $Co₃[Co(CN)₆]$ was washed with deionized water for several times, and dried at 60 °C for 3 h. Finally, 0.1 g Co₃[Co(CN)₆]₂ was annealed at 700 °C for 2 h with a heating rate of 5 °C min⁻¹ under N₂ atmosphere to obtain CoNC.

Fig. S1 A typical TEM image of the obtained $Co(OH)_2$.

Fig. S2 XRD patterns of $Co(OH)_2$ and $Co_3[Co(CN)_6]_2/C$.

Fig. S3 The N₂ adsorption isotherm of the Co₄NC@NC and Co₃[Co(CN)₆]₂/C.

Fig. S4 TGA curve of the Co4NC@NC.

Fig. S5 TEM images of Co4N/C and CoNC for (a) and (b).

Fig. S6 Survey spectrum of the Co₄NC@NC.

Fig. S7 FTIR spectra of $Co_4NC@NC$ and $Co_3[Co(CN)_6]_2/C$.

Fig. S8 (a) CV curves of Co₄NC@NC measured in a potential window with a non-Faradaic region at different scan rates: 20, 50, 100, 150 and 200 mV s⁻¹. (b) ECSA curve of the $Co_4NC@NC$ material. (c) CVs of CoNC was measured in a potential window with a non-Faradaic region at different scan rates: 20, 50, 100, 150 and 200 mV s^{-1} . (d) ECSA was measured to evaluate the exposed catalytically active sites in CoNC material.

Fig. S9 SEM and TEM images of Co₄NC@NC after 10000 s of OER test.

Fig. S10 XRD patterns of the obtained Co4NC@NC before and after 10000 s of OER test.

Fig. 11 The LSV of the Co₄NC@NC before and after the 10000 s of OER test.

Fig. S12 XPS spectra of the Co 2p, N 1s and C 1s for Co4NC@NC before and after 10000 s of OER test.

Fig. S13 K-L plots of the Co₄NC@NC catalysts.

Fig. 14 The TEM of Co4NC@NC before and after charging and discharging test.

Fig. 15 The XRD of Co₄NC@NC before and after charging and discharging test.

Fig. S16 Cycling stability of Co₄NC@NC and Pt/C at discharge/charge current densities of 10.0 mA cm⁻².

Fig. S17 Flexible soft-pack ZABs of open-circuit voltage.

Table S1 The battery performance comparisons of the present with previously reported similar materials.