Supporting Information

Thin carbon layer covered Co₄N cubes encapsulated in N-doped porous carbon nanocages as tri-functional catalysts with enhanced charge-transfer efficiency for Zn-air battery and overall water-splitting

Guanghui Zhang^a, Lingxue Zhao^a, Guangda Li^{*a}, Liqiang Xu^{*b}

^aSchool of Materials Science and Engineering, Qilu University of Technology

(Shandong Academy of Sciences), Jinan 250353, China

^b Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School

of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

Experimental Section

Synthesis of Co₄N/C

 $0.1g \text{ Co}(\text{OH})_2$ and 5 mL above mixed solution were added into 25 mL of deionized water and stirred for 24 h. The obtained product $\text{Co}_3[\text{Co}(\text{CN})_6]_2/\text{C}$ -1 was washed with deionized water for several times, and dried at 60 °C for 3 h. Finally, 0.1 g $\text{Co}_3[\text{Co}(\text{CN})_6]_2/\text{C}$ was annealed at 700 °C for 2 h with a heating rate of 5 °C min⁻¹ under N₂ atmosphere to obtain $\text{Co}_4\text{N/C}$.

Synthesis of CoNC

 $0.1 \text{g Co}(\text{OH})_2$, 0.1 mmol citric acid and 0.2 mmol K₃[Co(CN)₆] were added into 25 mL of deionized water and stirred for 24 h. The obtained product Co₃[Co(CN)₆]₂ was washed with deionized water for several times, and dried at 60 °C for 3 h. Finally, 0.1 g Co₃[Co(CN)₆]₂ was annealed at 700 °C for 2 h with a heating rate of 5 °C min⁻¹ under N₂ atmosphere to obtain CoNC.

Fig. S1 A typical TEM image of the obtained Co(OH)₂.

Fig. S2 XRD patterns of $Co(OH)_2$ and $Co_3[Co(CN)_6]_2/C$.

Fig. S3 The N_2 adsorption isotherm of the $Co_4NC@NC$ and $Co_3[Co(CN)_6]_2/C$.

Fig. S4 TGA curve of the Co₄NC@NC.

Fig. S5 TEM images of Co_4N/C and CoNC for (a) and (b).

Fig. S6 Survey spectrum of the Co₄NC@NC.

Fig. S7 FTIR spectra of Co₄NC@NC and Co₃[Co(CN)₆]₂/C.

Fig. S8 (a) CV curves of Co₄NC@NC measured in a potential window with a non-Faradaic region at different scan rates: 20, 50, 100, 150 and 200 mV s⁻¹. (b) ECSA curve of the Co₄NC@NC material. (c) CVs of CoNC was measured in a potential window with a non-Faradaic region at different scan rates: 20, 50, 100, 150 and 200 mV s⁻¹. (d) ECSA was measured to evaluate the exposed catalytically active sites in CoNC material.

Fig. S9 SEM and TEM images of Co₄NC@NC after 10000 s of OER test.

Fig. S10 XRD patterns of the obtained Co₄NC@NC before and after 10000 s of OER test.

Fig. 11 The LSV of the Co₄NC@NC before and after the 10000 s of OER test.

Fig. S12 XPS spectra of the Co 2p, N 1s and C 1s for Co₄NC@NC before and after 10000 s of OER test.

Fig. S13 K-L plots of the $Co_4NC@NC$ catalysts.

Fig. 14 The TEM of Co₄NC@NC before and after charging and discharging test.

Fig. 15 The XRD of $Co_4NC@NC$ before and after charging and discharging test.

Fig. S16 Cycling stability of $Co_4NC@NC$ and Pt/C at discharge/charge current densities of 10.0 mA cm⁻².

Fig. S17 Flexible soft-pack ZABs of open-circuit voltage.

Catalysts	Cycling condition	Stability	Flexible	Ref.
Co/ZnCo ₂ O ₄ @NC-CNTs	5 mA cm^{-2}	103 h	Yes	Nano Energy 82 (2021) 105710.
Co-N-C	2 mA cm ⁻²	140 h	No	Small 16 (2020) 2001171
P-CoO@PWC-2	10 mA cm ⁻²	232 h	Yes	Adv. Sci. (2021) 2101314
Ni ₃ Fe/Co-N-C	10 mA cm ⁻²	65 h	No	Chem. Eng. J. 395 (2020) 125151
Co-Fe-S@NSRPC	10 mA cm ⁻²	52 h	No	Nanoscale 12 (2020) 11746-11758
Co-MOF/LC-0.5	5 mA cm ⁻²	120 h	No	J. Power Sources 468 (2020) 228377
Co-MOF-800	1 mA cm ⁻²	85 h	No	Journal of Energy Chemistry 56 (2020) 290-298
KNiFe(CN) ₆ /C	5 mA cm^{-2}	333 h	Yes	Electrochim. Acta 397 (2021) 139278
Co/CoFe@NC	5 mA cm ⁻²	183 h	Yes	Nano-Micro Lett. (2021) 13 126
Co4NC@NC	5 mA cm ⁻² 10 mA cm-2	350 h 200 h	Yes	This Work

Table S1 The battery performance comparisons of the present with previously reported similar materials.