Supporting Information

Figure S1. Rietveld refining of (a) as-prepared CeO₂; (b) CeO₂ reduced at 400 °C (without the consideration of H species); (c) CeO₂ reduced at 400 °C (with the consideration of H species); (d) Oxidized CeO₂. The different curves (blue curves) of these four patterns are basically straight lines, and the value of Rwp and χ^2 are very small, which represent the high rationality of these refinement results.

Figure S2. TPD of CeO₂ and $4nmCeO_2$ -SiO₂ that were pre-reduced at 400 °C. The signal of m/z=2 was recorded and display in this picture. Experiment condition: heating rate 5 °C/min, vented with 30 mL/min Ar.

Figure S3. Raman spectra of bulk CeO_2 and 4 nm CeO_2 .

Supplementary discussion for Figure S3:

Raman spectrum is a common characterization for oxygen vacancy in CeO_2 .^{1, 2} There is only one Raman peak located at 461 cm⁻¹ in bulk CeO₂, which is the F_{2g} symmetric breathing mode of lattice O atoms. Once CeO₂ nanoparticle size is decreased to ~4 nm, a new Raman peak located at 608 cm⁻¹ was observed. This peak is attributed to oxygen vacancy in CeO₂ lattice.^{3, 4} This comparison indicates that decreasing CeO₂ nanoparticle size to ~4 nm could greatly improve the oxygen vacancy concentration compared to bulk CeO₂.

Figure S4. The models of (a) bare $CeO_2(111)$ surface, (b) bare $CeO_2(111)$ surface with 1 oxygen vacancy (VO), (c) Pt deposited on $CeO_2(111)$ surface and (d) Pt deposited on $CeO_2(111)$ surface with 1 VO. Yellow: Ce atom, red: O atom, gray: Pt atom.

Supplementary discussion for Figure S4:

The CeO₂ support in **Figure S4**(a,c) is composed of 96 O atoms and 48 Ce atoms by forming three layers. In comparison, defected CeO₂ support in **Figure S4**(b,d) is composed of 95 O atoms and 48 Ce atoms by removing one O atom on the first layer of CeO₂ support. Pt atom is placed on the location of oxygen vacancy on defected CeO₂ support. In comparison, Pt atom is also placed on similar location of CeO₂ support. The single point energies of **Figure S4** are listed in **Table S1**.

Figure S5. TEM image of (A) 4 nm CeO₂ colloid, (B) 4nmCeO₂-SiO₂ and (C) 4nmCeO₂-SiO₂ after 400 °C reduction for 2 h. CeO₂ nanoparticle size distribution of (D) 4 nm CeO₂ colloid, (E) 4nmCeO₂-SiO₂ and (F) 4nmCeO₂-SiO₂ after 400 °C reduction for 2 h.

Figure S6. Catalyst models of (Pt/4nmCeO₂)/SiO₂ and Pt/(4nmCeO₂-SiO₂).

Supplementary discussion for Figure S6:

During the preparation of (Pt/4nmCeO₂)/SiO₂ sample via SRS, the reductive centers on 4 nm CeO₂ nano-islands react with the H_2PtCl_6 precursor, leading to the Pt deposition on CeO₂ surface. In contrast, the pre-reduction generates no reducing species on SiO₂ surface due to its irreducible property. The lack of chemical reactions between SiO₂ surface and H_2PtCl_6 precursor leads to the weak interaction between Pt and SiO₂. Furthermore, the deionized water washing at the last step of catalyst preparation could remove Pt atoms that are weakly bound on $4nmCeO_2/SiO_2$ surface.

On the other hand, $Pt/(4nmCeO_2-SiO_2)$ is prepared by impregnation method, which could not control the location of Pt. Thus, the Pt was randomly deposited on $4nmCeO_2-SiO_2$ support. There is only 10wt% 4 nm CeO_2 nano-islands in $4nmCeO_2-SiO_2$ support, so the SiO_2 surface is the dominate surface in this support. Therefore, once Pt is randomly deposited on $4nmCeO_2-SiO_2$ support with impregnation, most Pt species are located on SiO_2 surface.

Figure S7. HADDF-STEM images of (A,C) (Pt/4nmCeO₂)/SiO₂ and (B,D) Pt/(4nmCeO₂-SiO₂) with various scale bars. CeO₂ nanoparticle size distribution in (E) (Pt/4nmCeO₂)/SiO₂ and (F) Pt/(4nmCeO₂-SiO₂).

Figure S8. Energy dispersive spectrometer (EDS) mapping of (Pt/4nmCeO₂)/SiO₂.

Figure S9. XRD patterns of (Pt/4nmCeO₂)/SiO₂, Pt/(4nmCeO₂-SiO₂), and control catalysts.

Figure S10. CO-FTIR spectra of (a) Pt/CeO₂, (b) Pt/SiO₂.

Figure S11. XANES of Ce L₃ edge of *in situ* reduced $4nmCeO_2$ -SiO₂, (Pt/4nmCeO₂)/SiO₂ and Pt/(4nmCeO₂-SiO₂). Ce(NO₃)₃ is set as a reference sample.

Figure S12. XANES of Pt L₃ edge of *in situ* reduced Pt/SiO₂, Pt/CeO₂, (Pt/4nmCeO₂)/SiO₂ and Pt/(4nmCeO₂-SiO₂). PtO₂ was used as a reference standard for Pt⁴⁺. Pt(NH₃)₄(NO₃)₂ was used as a reference standard for Pt²⁺. Pt foil was used as a reference standard for Pt⁰.

Figure S13. Phenylacetylene hydrogenation under (A) 0.5 MPa H₂, 1h; (B) 2 MPa H₂, 1 h; (C) 1 MPa H₂, 0.5 h and (D) 1 MPa H₂, 2 h. Additional conditions: 0.4 mmol phenylacetylene, 40 °C. Circles: conversion. Bars: selectivity of styrene and ethylbenzene.

Figure S14. Catalyst recycle test of (A) (Pt/4nmCeO₂)/SiO₂; (B) Pt/(4nmCeO₂-SiO₂). Conditions: 0.4 mmol phenylacetylene, 1 MPa H₂, 1 h, 40 °C. Circles: conversion. Bars: selectivity of styrene and ethylbenzene.

Figure S15. HADDF-STEM images of 4th recycled (Pt/4nmCeO₂)/SiO₂ catalyst.

8 8/ 2/	,	
Models	1 VO on CeO ₂ (111)	Perfect CeO ₂ (111)
CeO ₂ (111) (eV)	-1159.6300	-1168.3951
Pt single atom (eV)	2.3733	2.3733
Pt/CeO ₂ (eV)	-1161.3518	-1168.1295
Pt binding energy (eV)	-4.0951	-2.1077

Table S1. The Pt binding energy on CeO₂(111) surface.

Supplementary description for Table S1:

Table S1 summarizes the single point energy of different models displayed in **Figure S4**, upon which the Pt binding energy is calculated. For example, the single point energy of $CeO_2(111)$ surface (96 O atoms + 48 Ce atoms) is -1168.3951 eV according to the OUTCAR file of VASP. And the single point energy of Pt single atom is 2.3733 eV. Once Pt is placed on the $CeO_2(111)$ surface, its overall single point energy becomes -1168.1295 eV. Therefore, the Pt binding energy on perfect $CeO_2(111)$ surface is calculated as -2.1077 eV. On the other hand, the Pt binding energy in the oxygen vacancy of $CeO_2(111)$ surface is calculated as -4.0951 eV. Based on these two binding energies, it is concluded that Pt has stronger interaction with defected CeO_2 surface.

Table S2. ICP-OES characterization for Pt on different samples.

Samples	Pt loading amount/wt%		
Pt/CeO ₂ -SR	0.37		
Pt/CeO ₂ -NR	0.14		
(Pt/4nmCeO ₂)/SiO ₂	0.23		
(Pt/4nmCeO ₂)/SiO ₂ -NR	0.08		

Supplementary description for Table S2:

The key difference between Pt/CeO₂-SR and Pt/CeO₂-NR, (Pt/4nmCeO₂)/SiO₂ and (Pt/4nmCeO₂)/SiO₂-NR is whether there is a pre-reduction step. It is expected that if reducing species (adsorbed H species and Ce³⁺ species) are fully oxidized as soon as CeO₂ and 4nmCeO₂/SiO₂ are taken out from reducing furnace, the Pt loading amount on all four samples should be similar because the feeding amount ratios of Pt : CeO₂ and Pt : (4nmCeO₂-SiO₂) were controlled as 0.5wt% in all preparations. **Table S2** shows the Pt loading amount of these four samples, and it is observed that the pre-reduction treatment improves Pt loading amount on both CeO₂ support and 4nmCeO₂/SiO₂ support. This observation proves that not all reducing species (adsorbed H species and Ce³⁺ species) generated in pre-reduction is oxidized once the bare supports (bulk CeO₂ and 4nmCeO₂-SiO₂) are exposed to air at room temperature.

Table S3. XANES spectra of Ce L_3 edge of *in situ* reduced 4nmCeO₂-SiO₂, (Pt/4nmCeO₂)/SiO₂ and Pt/(4nmCeO₂-SiO₂).¹

Sample	Ce ³⁺ /wt%	Ce ⁴⁺ /wt%	R-factor
4nmCeO ₂ -SiO ₂	49.9	50.1	0.016
(Pt/4nmCeO ₂)/SiO ₂	49.4	50.6	0.019
Pt/(4nmCeO ₂ -SiO ₂)	51.8	48.2	0.027

¹For the LCF, CeO₂ was used as a reference standard for Ce⁴⁺; Ce(NO₃)₃·6H₂O was used as a reference standard for Ce³⁺. CeO₂:SiO₂=1:10 (w/w) in all samples. (Pt/CeO₂)/SiO₂ and Pt/(CeO₂-SiO₂) are *in situ* reduced.

Table S4. XANES spectra of Pt L_3 edge of *in situ* reduced Pt/SiO₂, Pt/CeO₂, (Pt/4nmCeO₂)/SiO₂ and Pt/(4nmCeO₂-SiO₂) samples.¹

Sample	Pt ⁰ /wt%	Pt ²⁺ /wt%	Pt ⁴⁺ /wt%	R-factor	
Pt/SiO ₂	100	0	0	0.038	
Pt/CeO ₂	81.0	0	19.0	0.006	
(Pt/4nmCeO ₂)/SiO ₂	47.4	0	52.6	0.037	
Pt/(4nmCeO ₂ -SiO ₂)	100	0	0	0.011	

¹For the LCF, PtO_2 was used as a reference standard for Pt^{4+} . $Pt(NH_3)_4(NO_3)_2$ was used as a reference standard for Pt^{2+} . Pt foil was used as a reference standard for Pt^0 .

Table S5. Pt loading amount during catalyst stability test characterized by ICP-OES.

Pt loading amount/wt%	(Pt/4nmCeO ₂)/SiO ₂	Pt/(4nmCeO ₂ -SiO ₂)
 Fresh catalyst	0.2376	0.1977
1 st recycled catalyst	0.1843	0.1277
2 nd recycled catalyst	0.1677	0.1059
3 rd recycled catalyst	0.1544	0.1094
4 th recycled catalyst	0.1335	0.1063

 Table S6. CeO2 loading amount during catalyst stability test characterized by ICP-OES.

CeO ₂ loading	g amount/wt%	(Pt/4nmCeO ₂)/SiO ₂	Pt/(4nmCeO ₂ -SiO ₂)
Fresh	catalyst	6.5790	7.8509
1 st recycl	ed catalyst	6.7438	5.0041
2 nd recyc	led catalyst	6.8105	4.3174
3 rd recyc	ed catalyst	7.1054	5.8882
4 th recyc	ed catalyst	6.1070	4.7866

Catalyst	Temperature/°C	Conversion/%	Selectivity/%	Reference
Au/graphene oxide	60	99	99	5
PdZn@ZIF-8	100	95	92	6

Pt colloid	50	99	90.2	7
Pd/Al ₂ O ₃	50	99	96	8

References

1. Z. Zhang; Y. Wang; J. Lu; J. Zhang; M. Li; X. Liu; F. Wang, ACS Catalysis 2018, 8, 2635.

2. Z. Zhang; Y. Wang; J. Lu; C. Zhang; M. Wang; M. Li; X. Liu; F. Wang, ACS Catalysis 2016, 6, 8248.

3. M. Guo; J. Lu; Y. Wu; Y. Wang; M. Luo, *Langmuir* **2011**, *27*, 3872.

4. Z. Wu; M. Li; J. Howe; H. M. Meyer, III; S. H. Overbury, Langmuir 2010, 26, 16595.

5. L. Shao; X. Huang; D. Teschner; W. Zhang, ACS Catalysis 2014, 4, 2369.

6. P. Weerachawanasak; O. Mekasuwandumrong; M. Arai; S.-I. Fujita; P. Praserthdam; J. Panpranot, *Journal of Catalysis* **2009**, *262*, 199.

7. S. Domínguez-Domínguez; Á. Berenguer-Murcia; D. Cazorla-Amorós; Á. Linares-Solano, *Journal of Catalysis* **2006**, *243*, 74.

8. S. Domínguez-Domínguez; Á. Berenguer-Murcia; Á. Linares-Solano; D. Cazorla-Amorós, *Journal of Catalysis* **2008**, 257, 87.