Support Information

ZIF-67/BiOCl nanocomposite for highly efficient detection of NO₂ gas at Room

temperature

Jiahui Fan^a, Lin Jiang^a, He Lv^a, Fangjie Qin^a, Yihe Fan^a, Jue Wang^a, Muhammad Ikram^{b, *}, Keying Shi^{a, *}

- a. Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, P. R. China.
- b. Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China.
- c. School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao 266555,
 Shandong, P.R. China
- * Corresponding author
- Corresponding author: Tel: +86 451 86609141; +86 451 86604920
- E-mail: ikram@hit.edu.cn
- E-mail: shikeying2008@163.com

Fax: +86 4518667 3647; Tel: +86 451 8660 9141

Scheme S1 Diagram of the sensing process for the gas transportation system.

Materials

All reagents are of analytical grade and have not been further purified. Bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O, 99%) was purchased from Sinopharm Chemical Reagent Co., Ltd. Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, 99%) and Ethyne glycol (EG) were purchased from Xilong Chemical Co., Ltd. Methanol (CH₃OH) was purchased from Tianjin Fuyu Fine Chemical Co., Ltd. Anhydrous ethanol (C₂H₅OH) and Hexadecyltrimethylammonium bromide (CTAB) was purchased from Tianjin Comio Chemical Reagent Co., Ltd. 2-Methylimidazole and Poly(diene dimethyl ammonium chloride) solution (PDDA) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.

Materials	Gas	W. T.	Gas Conc.	T _{res} /T _{rec}	Sensitivit y	LOD	Ref
		(°C)	(ppm)	(\$)	(R_a/R_g)	(ppm)	
This Work	NO ₂	RT	100	7s/86	44.81 ²	0.05	This Work
Co ₃ O ₄ /g- C ₃ N ₄ (ZIF-67 drived)	NO ₂	RT	100	1.06/26.6	17.83 ^②	0.05	1
SnO ₂ /ZIF- 8	NO ₂	300	10	64/45	167 ²	0.15	2
ZIF- 8/In ₂ O ₃	NO ₂	140	1	80/133	$5.6^{(2)}$	0.01	3
Au/BiOCl	CO _x	200-300 °C	100-400 pm	63.2% ^①	9s	-	4
BiOCl	СО	300-400 °C	800 ppm	90% ^①	4.3s	-	5
BiOCl	Ethanol	180 °C	1000 ppm	$30\%^{(1)}$	-	-	6
a-C /TeO ₂	NO ₂	50	10		1.978 ²		7
g- C ₃ N ₄ @Ti O ₂	NO ₂	RT	100	329/372	19.7 [©]	0.001	8
Cu-MoS ₂	NO ₂	100	20	54/82	30^{2}	2	9
BP microribb ns	NO ₂	RT	100		66% ^①	0.4ppb	10
Cu ₂ O/Cu O-0.5	NO ₂	RT	10	23/159	82.0% ^①	0.01	11
WO ₃ /WS ₂ -300	NO ₂	RT	50	29/489	455.3% ^①	~5 ppb	12

Table S1. The comparison of present work on ZIF-67/BiOCl nanocomposite with the reported literatures.

W.T.: Working temperature; LOD: limit of detection; RT: Room temperature.

(1): $S=|Ra-Rg|/Ra \times 100\%$ or $S=|Rg-Ra|/Ra \times 100\%$; (2): S=Ra/Rg

Fig. S1 (a) XRD pattern of the pristine BiOCl NSs and ZIF-67; (b) nitrogen adsorption and desorption isotherms of as-prepared ZIF-67 (Inset shows the aperture distribution).

Samples	S_{BET} (m ² /g)	Pore size (nm)
ZIF-67	1351.58	1.70
ZBO-1	1307.06	2.91
ZBO-2	1251.02	3.62
ZBO-3	1146.16	4.35

Table S2 The textual characteristics of nitrogen adsorption and desorption isotherms of all ZBO.

Raman Bands cm ⁻¹	Assignment	Ref		
423	Co-N			
684	Imdz ring puckering, H oop bend			
738	C=N oop bend, δ N-H			
1121	C-H oop bend			
1144	v C5-N	13		
1178	ν C–N + N–H wag			
1303	ring expansion			
1382	δCH_3			
1456	С-Н			
1505	$C_2N_3 + C_4N_3 + \nu C_5N1 + N-H$			

Table S3 Assignment of the Raman bands of ZIF-67,

Imdz: imidazole

Oop: out of plane

Ar: aromatic

Fig. S2 (a) AFM image of BiOCl, with red lines indicating the different regional height profiles; (b) the height profile of the red line reflects the thickness of the BiOCl NSs.

Fig. S3 Selected area electron diffraction (SAED) of ZBO-2

Fig. S4. (a-d) HRTEM images of ZBO-2 (red lines show surface defects in BiOCl NSs, blue lines indicate points defects).

Sample	ZBO	0-2	ZBO-2+NO ₂			
Peaks	C0 ²⁺	C0 ³⁺	C0 ²⁺	C0 ³⁺		
Binding energy (eV)	785.4 801.5	797.1 781.5	785.5 802.7	797.7 781.8		
Peak area ratio (%)	50.3	49.7	48.9	51.1		
Peak area ratio (Co ³⁺ /Co ²⁺)	0.9	98	1.04			

Table S4. The XPS peak positions and peak area ratio (%) for Co

Table S5 O1s peak position and peak area ratio (%) of ZBO-2 and ZBO-2+NO₂ samples O_1 : lattice oxygen; O_V : oxygen vacancy; O_c : chemisorbed oxygen

Sample		ZBO-2		ZBO-2+NO ₂			
Peak	Ol	Ov	O _C	Ol	Ov	O _C	
Binding energy (eV)	535.3	532.9	531.7	535.9	533.4	532.6	
Peak area ratio (%)	35.9	43.6	20.5	34.4	39.7	25.9	

Raw materials	$R_1(\Omega)$	C ₁ (F)	$\mathrm{R}_{2}\left(\Omega ight)$	C ₂ (F)
ZBO-1	4.417×10 ⁵	1.207×10 ⁻¹²	1.268×10^{6}	1.261×10 ⁻¹⁰
ZBO-2	4.463×10 ⁴	7.015×10 ⁻¹¹	1.081×10 ⁶	3.691×10 ⁻¹¹
ZBO-3	5.170×10 ⁴	7.088×10 ⁻¹¹	1.207×10 ⁶	3.746×10 ⁻¹¹
BiOCl	5.692×10 ⁷	8.305×10 ⁻¹²	8.377×10 ⁷	5.347×10 ⁻¹⁰

Table S6 Parameters obtained by fitting experimental curve to equivalent circuit (In-air atmosphere).

Fig. S5 The equivalent circuit model used to interpret the EIS data.

Fig. S6 Current-Voltage (I-V) behavior measured at RT in air.

Sample	ZBO-1		ZBO-2		ZBO-3			BiCOl				
NO ₂ (ppm)	S	T/s	Tr/s									
100	40.32	7.98	41.34	44.81	7.00	44.00	42.56	7.58	43.33	20.54	7.47	66.98
50	30.67	14.65	31.30	38.53	10.00	18.18	35.34	14.35	32.66	6.06	18.07	56.88
30	19.28	18.66	58.67	24.73	13.58	17.00	22.41	17.38	30.91	3.14	24.25	50.25
10	15.33	20.00	20.50	18.76	15.82	17.00	17.73	18.48	29.37	1.78	27.01	45.60
5	9.25	23.70	15.80	10.47	16.00	9.00	9.64	22.00	27.49	1.59	29.87	35.08
3	4.31	27.59	19.60	5.30	18.83	8.36	5.20	24.58	24.45	1.44	32.40	30.55
1	1.88	28.37	12.50	1.95	20.00	7.18	1.90	26.98	21.26	1.27	38.47	20.02
0.5	1.54	33.75	10.50	1.63	22.48	6.70	1.42	29.67	15.59			
0.3	1.21	34.66	8.50	1.40	25.96	5.24	1.26	32.58	10.40			
0.1	1.01	38.95	6.40	1.21	26.85	4.35	1.18	35.67	8.30			
0.05	0.98	42.65	3.10	1.11	28.65	2.50	23.51	16.00	85.00			

Table S7 Response, response time and recovery time of **ZBO** sensors at room temperature (RT=25 °C, RH 25%).

*S: Response T_s : Response time T_r : Recovery time

Fig. S7 Dynamic response-recovery curves of (a) ZBO-3; (b) ZBO-1; (c) BiOCl; (d) ZIF-67

Fig. S8 Response value of ZBO -2 sensor at different humidity conditions.

Calculation for limit of detection (LOD):

The noise of the sensor is calculated using the change in the relative response of the sensor over the baseline (root mean square deviation) ¹⁴⁻¹⁶. According to Eq. (1) below, and Si and S obtained by polynomial fitting method in Figure 6a, $[Vx]^2$ can be collected. According to Eq. (2), the sensor noise is 0.00189, and according to Eq. (3), the theoretical detection limit (for a signal-to-noise ratio of 3) is about 10 ppb. Therefore, the theoretical detection limit of 10 ppb to NO₂ at RT.

$$Vx^{2} = \Sigma(Si - S)^{2}$$
(1)

$$rms = \sqrt{\frac{Vx^{2}}{N}} \quad (N = 50)$$

$$LOD = 3 * \left(\frac{rms}{slope}\right)$$
(3)

Fig. S9 (a) The curve obtained by fifth-order polynomial fitting the first 50 response points in the response-time baseline of the ZBO-2 sensor before the injection of NO_2 . The response values before and after fitting are recorded as Yi and Y, respectively; (b) the curve with detailed data obtained by linear fitting the response points in the NO_2 sensing measurement of Figure 6a.

Fig. S10 FT-IR spectra for ZBO-2 composite in air and exposed to NO₂ at RT.

Fig. S11 (a and b) Uv-vis diffuse reflectance spectra of BiOCl, ZIF-67, and ZBO-2 (the energy value at the intersection of tangent and the horizontal axis is the optical band gap); (c and d) Kelvin probe scheme for pure ZIF-67 and BiOCl NSs.

References

- Ullah, M.; Bai, X.; Chen, J.; Lv, H.; Liu, Z.; Zhang, Y.; Wang, J.; Sun, B.; Li, L.; Shi, K., Metalorganic framework material derived Co₃O₄ coupled with graphitic carbon nitride as highly sensitive NO₂ gas sensor at room temperature. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 2021, 612, 125972.
- Zhan, M.; Ge, C.; Hussain, S.; Alkorbi, A. S.; Alsaiari, R.; Alhemiary, N. A.; Qiao, G.; Liu, G., Enhanced NO₂ gas-sensing performance by core-shell SnO₂/ZIF-8 nanospheres. *Chemosphere* 2022, 291, 132842.
- Liu, Y.; Wang, R.; Zhang, T.; Liu, S.; Fei, T., Zeolitic imidazolate framework-8 (ZIF-8)-coated In₂O₃ nanofibers as an efficient sensing material for ppb-level NO₂ detection. *J Colloid Interface Sci* 2019, *541*, 249-257.
- Michel, C. R.; López Contreras, N. L.; Martínez-Preciado, A. H., CO₂ and CO gas sensing properties of nanostructured BiOCl ribbons doped with gold nanoparticles. *Sensors and Actuators B: Chemical* 2012, *173*, 100-105.
- 5. Michel, C. R.; Contreras, N. L. L.; Martínez-Preciado, A. H., Gas sensing properties of nanostructured bismuth oxychloride. *Sensors and Actuators B: Chemical* **2011**, *160*, 271-277.
- Navale, S. T.; Yang, Z.; Liu, C.; Kumar, A.; Sharma, G.; Cao, P.; Patil, V. B.; Stadler, F. J., Solidstate synthesis strategy of hierarchically-structured BiOCl desert-roses for the selective detection of C₂H₅OH. *Journal of Alloys and Compounds* 2019, 778, 532-541.
- Oum, W.; Mirzaei, A.; Hussain, T.; Bang, J. H.; Han, S.; Shin, K. Y.; Yu, D. J.; Kang, S.; Kaewmaraya, T.; Kim, S. S.; Kim, H. W., Room temperature NO₂ sensing performance of a-Cdecorated TeO2 nanowires. *Sensors and Actuators B: Chemical* 2022, 363, 131853.
- Pasupuleti, K. S.; Reddeppa, M.; Chougule, S. S.; Bak, N. H.; Nam, D. J.; Jung, N.; Cho, H. D.; Kim, S. G.; Kim, M. D., High performance langasite based SAW NO₂ gas sensor using 2D g-C₃N₄@TiO₂ hybrid nanocomposite. *J Hazard Mater* 2022, *427*, 128174.
- Tyagi, S.; Kumar, A.; Kumar, A.; Gautam, Y. K.; Kumar, V.; Kumar, Y.; Singh, B. P., Enhancement in the sensitivity and selectivity of Cu functionalized MoS₂ nanoworm thin films for nitrogen dioxide gas sensor. *Materials Research Bulletin* 2022, 150, 111784.
- 10. Han, D.; Han, X.; Liu, L.; Li, D.; Liu, Y.; Liu, Z.; Liu, D.; Chen, Y.; Zhuo, K.; Sang, S., Sub-

ppb-Level Detection of Nitrogen Dioxide Based on High-Quality Black Phosphorus. *ACS Appl Mater Interfaces* **2022**, *14*, 13942-13951.

- Ni, M.; Han, S.; Liang, Z.; Liu, S.; Zhang, X.; Hussain, S.; Wang, M.; Qiao, G.; Liu, G., Enhanced room-temperature NO₂ sensing performance of mulberry-like Cu₂O/CuO composites. *Sensors and Actuators A: Physical* 2023, 350, 114136.
- Liang, Z.; Zhang, X.; Yang, J.; Cheng, Y.; Hou, H.; Hussain, S.; Liu, J.; Qiao, G.; Liu, G., Facile fabrication of nanoflower-like WO₃/WS₂ heterojunction for highly sensitive NO₂ detection at room temperature. *J Hazard Mater* 2023, 443 (, 130316.
- Usov, P. M.; McDonnell-Worth, C.; Zhou, F.; MacFarlane, D. R.; D'Alessandro, D. M., The Electrochemical Transformation of the Zeolitic Imidazolate Framework ZIF-67 in Aqueous Electrolytes. *Electrochimica Acta* 2015, 153, 433-438.
- Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K., All-organic vapor sensor using inkjet-printed reduced graphene oxide. *Angew Chem Int Ed Engl* 2010, 49, 2154-7.
- Gu, W.; Yang, L.; Teng, F.; Abiden, Z. U.; Zhao, F., Investigation on Different Electrochemical Behaviors of Four-Layered Bismuth Oxyhalogens. *Energy Technology* 2019, 7, 1900460.
- Li, M.; Zhou, D.; Zhao, J.; Zheng, Z.; He, J.; Hu, L.; Xia, Z.; Tang, J.; Liu, H., Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection. *Sensors and Actuators B: Chemical* 2015, 217, 198-201.