Supporting Information for

TiH₂-supported Ru catalyst with unusual electron transfer behaviour for highly efficient carbon dioxide methanation at low temperature

Zhujie He,^{†a} Huanfeng Huang,^{†a} Zhuodi Chen,^a Yuqian Liang,^a Zhixiang Huang,^a Shunnian Ning,^a Lilin Tan,^b Mihail Barboiu, ^{a,c} Dawei Wang ^{*a} and Cheng-Yong Su^a

^a Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
^b Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
^c Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095 Montpellier, France

[†] These authors contributed equally to this work

Corresponding Author

E-mail: wdawei@mail.sysu.edu.cn

Fig. S1 TEM images of TiH_2 at different magnification.

Fig. S2 Interfacial structure of 50RTH. (a–c) TEM images, (d) HRTEM image, (e) STEM image, and (d) EDS line scans.

Fig. S3 Interfacial structure of 100RTH. (a–c) TEM images, (d) HRTEM image, (e) STEM image, and (d) EDS line scans.

Fig. S4 Interfacial structure of 150RTH. (a–c) TEM images, (d) HRTEM image, (e) STEM image, and (d) EDS line scans.

Fig. S5 Interfacial structure of 200RTH. (a–c) TEM images, (d) HRTEM image, (e) STEM image, and (d) EDS line scans.

Fig. S6 SEM images of (a) 50RTH, (b) 100RTH, (c) 150RTH, and (d) 200RTH.

Fig. S7 (a) SEM, (b) TEM, and (c) HRTEM images of Ru NPs.

Fig. S8 XRD patterns of Ru NPs.

Diffraction peaks at $2\theta = 38.4$, 42.2, 44.0, 58.3, 69.4 and 78.4° are indexed to the (100), (002), (101), (102), (110), and (103) lattice planes of hexagonal ruthenium, respectively.

Fig. S9 Production rate of CH_4 based on the total mass of catalysts.

Fig. S10 Mass spectrometer signals for CO_2 (m/z = 44) during temperature-programmed desorption measurement for *m*RTH and control catalysts.

Samples	Ti (wt. %)	Ru (wt. %)
50RTH	85.17	5.72
100RTH	82.38	9.76
150RTH	74.96	15.54
200RTH	72.89	17.35

Table S1. Element analysis of *m*RTH based on ICP measurements.

Table S2. Contact potentials from KPFM measurements shown in Figure 3.

Samples _	Absolute contact potential (mV)					
	E_{sample} (mV)	$E_{\text{substrate}}(\text{mV})$	$\Delta CPD (mV)$			
TiH ₂	-415	-407	-8.0			
50RTH	-110	-112	2.0			
100RTH	-93.6	-120	26.4			
150RTH	-46.6	-84.0	37.4			
200RTH	-92.2	-161	68.8			

Samples		Binding energy (eV)						
	$Ti^{4+} 2p_{3/2}$	TiO _{2-x} 2p _{3/2}	$Ru^{4+} 3d_{5/2}$	$Ru^0 \ 3d_{3/2}$				
TiH ₂	458.22	457.92	/	/				
50RTH	458.34	457.93	280.30	279.52				
100RTH	458.82	458.35	280.33	279.73				
150RTH	458.83	458.42	280.45	279.77				
200RTH	459.38	458.63	280.50	279.83				
Ru NPs	/	/	280.63	279.90				

Table S3. Binding energies of XPS peaks shown in Figure 4a-b.

Catalysts	Temperature	Pressure	CO ₂ conversion	CO ₂ Selectivity	CH ₄ Production	References
	°C		%	%	Rate	
100RTH	200	4 bars	86.4	99.8	168.7	This work
		$CO_2:H_2 = 1:4$			(mmol g _{Ru} ⁻¹ h ⁻¹)	
5%Ru/TiO ₂ -P25-	200	1 atm	27.4	100	9.25	Catal. Sci. Technol.,
450		$CO_2:H_2 = 1:4$			$(\text{mmol } g_{Ru}^{-1} h^{-1})$	2016, 6, 8117
		20 mL/min				
Ru/TiO ₂	400	1 atm	75	~97	78.48	Appl. Surf. Sci.,
		10%CO ₂ /40%			$(\text{mmol } g_{\text{cat.}}^{-1} h^{-1})$	2022, 587, 152856
		$H_2/50\%Ar$				
		40 mL/min				
Ru/TiO ₂ -200Air- 300R	200	0.1 MPa	4.05	100	3.47	ACS Catal. 2022, 12,
		$H_2/CO_2/N_2 =$			$mmol_{CO2} g_{Ru}^{-1} h^{-1}$	1697
		70/20/10				
		$GHSV = 60\ 000$				
		mL h^{-1} g_{cat}^{-1}				

Table S4. Performance comparison between *m*RTH and others Ru-based catalysts reported in literature.

Ru/CeO ₂	250	CO ₂ (15%,v/v) H ₂ (60%, v/v) Ar (25%, v/v) 40 mL/min	92.7		4.032 mmol g _{cat.} ⁻¹ h ⁻¹	J. Am. Chem. Soc. 2016, 138, 6298
Ru(3%)/CeO ₂ - NCs	150	CO ₂ (15%, v/v) H ₂ (60%, v/v) Ar (25%, v/v) 40 mL/min	<10	>99	0.17 mmol g _{cat.} -1 h-1	J. Catal., 2015, 329, 177
5%Ru/N-CNF	370	5%CO ₂ 15%H ₂ /Ar 60 mL min ⁻¹	~60	~61	1900 mmol g _{Ru} ⁻¹ h ⁻¹	<i>ChemCatChem</i> , 2015,7,1347
Ru/TiO ₂	200	1 atm $CO_2/H_2 = 1:3$ GHSV = 20000 $mL g_{cat}^{-1} h^{-1}$	~1		3.51 mmol g _{Ru} -1 h-1	J. Mater. Chem. A, 2020, 8, 7390
Ru/ZrO ₂ @C(MI L)	300	40 bar H ₂ /CO ₂ = 3:1 70 mL/min	64	100	2340 mmol g _{cat.} ⁻¹ h ⁻¹	<i>Catal. Today</i> , 2021, 371, 120

Ru/pBN-1.13%F	400	10 bar H ₂ :CO ₂ = 4:1 GHSV = 18000 h ⁻¹	61.6%	96.5	7380	ACS Catal. 2019, 9, 10077
Ru/TiO ₂ (001)	200	1 atm 10% CO ₂ 40% H ₂	~10%	100	~2.16	<i>J. CO</i> ₂ <i>Util.</i> , 2019, 33, 242
		50%N ₂ 20 mL/min				