
1

Electronic Supplementary Informatin (ESI)

Role of Two-Dimensional Monolayer MoS2 Interlayer in the 

Temperature-Dependent Longitudinal Spin Seebeck Effect 

in Pt/YIG Bilayer Structures

Chanho Park1, †, Jae Won Choi1, †, No-Won Park1 , Gil-Sung Kim1 , Takashi Kikkawa2, 
Eiji Saitoh2,3,4, and Sang-Kwon Lee1,*

1Department of Physics, Center for Berry Curvature based New Phenomena, Chung-Ang University, 
Seoul 06974, Republic of Korea

2Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
3Institute for AI and Beyond, The University of Tokyo, Tokyo 113-8656, Japan
4WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

*Corresponding author. Email: sangkwonlee@cau.ac.kr
†These authors contributed equally to this work

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2023

mailto:sangkwonlee@cau.ac.kr


2

1. X-ray Diffraction and Raman Patterns of the YIG/GGG Substrate

Fig. S1. Crystallographic and structural characterizations of the YIG/GGG structure. (a) 

X-ray diffraction pattern of the YIG/GGG substrate, showing only the (222), (444), and (666) 

Bragg peaks of YIG; no other phase is observed. (b) Raman spectrum of the YIG/GGG 

substrate. The Raman mode at ~ 272 cm-1 is labeled as L[FeO4]5-. The vibrations of the FeO4 

group form the internal Raman modes, which are labeled as F2g, Eg, and A1g. These Raman 

modes of our YIG/GGG substrate are in good agreement with those reported in previous studies 

on 15-nm-thick YIG/GGG thin films.1 These results strongly suggest the achievement of a 

single-crystalline YIG growth with a [111] orientation on the [111]-oriented GGG (111) 

substrate.

2. Growth of triangular monolayer (ML) MoS2 
The monolayer (ML) MoS2 flakes were synthesized by an atmospheric pressure chemical vapor 

deposition method with MoO3 (99%, Aldrich) and sulfur (S) (99.5%, Aldrich) powders as 

sources. A hot wall furnace was used where the MoO3 powder was placed in the center of a 

quartz tube. The S powder was placed in the upstream zone, whereas the SiO2/Si substrate was 

placed face down above the crucible containing MoO3. After pumping down to a base pressure 

of 60 mTorr and subsequently purging with high-purity N2 gas to eliminate oxygen, the 
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temperature was gradually increased to 400 °C at a rate of 25 °C/min and maintained for 30 

min, while the pressure was set to ~700 mTorr with a 100 sccm N2 gas flow. After reducing 

the pressure to atmospheric conditions using 10 sccm N2 gas flow, the temperature for the 

reaction was increased to 850 °C at a rate of 25 °C/min and maintained for 5 min for synthesis 

of monolayer MoS2. Finally, the furnace was cooled down to room temperature naturally under 

same flow rate of carrier gas.

3. Wet transfer process for ML MoS2 on the YIG/GGG substrate

As-grown MLs MoS2 flakes have been successfully transferred onto the YIG/GGG substrate 

as following steps: (i) a poly-methyl-methacrylate (PMMA, MW ~ 350K, Sigma-Aldrich) 

solution spun onto the MoS2 flakes and subsequently annealed at 110 °C for 30 s. (ii) The 

PMMA-supported MoS2/SiO2/Si substrate was emerged into 5 wt% hydrogen fluoride (HF) 

solution for etching SiO2 layer at room temperature. (iii) After 1 minutes, the PMMA-supported 

ML MoS2 detached from SiO2/Si substrate on the water surface using the interface floating 

method, followed by thoroughly rinse in deionized (DI) water bath several times to remove HF 

remnants from the MoS2 surface. (iv) The detached PMMA/MoS2 layer was transferred onto 

the YIG/GGG substrate from the water surface, and dried at the room temperature. (v) After 

heating up at 110ºC for expelling remaining H2O and enhancing interfacial adhesion between 

MoS2 and YIG/GGG, the MoS2-transferred substrate was dipped into acetone bath for 2 h in 

order to remove PMMA. (vi) After gently drying using N2 gas, the Pt layer was deposited onto 

the ML MoS2/YIG/GGG samples by radio-frequency magnetron sputtering in ultrahigh 

vacuum at an ambient temperature.
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4. Calculation of Js using the BTE 

One of the most straightforward methods to calculate spin current density in a normal metal 

(NM)/ferromagnetic (FM) system is the Boltzmann transport equation (BTE). Based on the 

drift-diffusion model of spins, one can semi-classically solve the BTE-attached magnon 

chemical potential stemming from the boundary conditions. Then, the charge current or voltage 

converted from the spin current by inverse spin Hall effect (ISHE) can be calculated.2 As shown 

in the paper, we directly followed the calculation steps of Rezende et al.3 From the BTE model 

for the thermally driven longitudinal spin Seebeck effect (LSSE), the spin current  can be 𝐽𝑆

written in terms of the magnon relaxation time , magnetization, and other integrals used in 𝜏𝑘

describing the magnon distribution.3 In the last step, instead of substituting a constant 

relaxation time for the magnons ( ) and another factor known as magnon scattering rate, we 𝜏𝑘

inserted the temperature-dependent magnon relaxation time  derived by Basso et al.4𝜏(𝑇)

Description of the one-dimensional spin current density: Magnons are generated due to the 

nonequilibrium magnetization in the YIG/GGG substrate.5 We first need to solve the Landau–

Lifshitz–Gilbert (LLG) equation for determining the magnetization dynamics.

,                             (1)

𝑑𝑀
𝑑𝑡

=  ‒ 𝛾(𝑀 ×  𝐻𝑒𝑓𝑓) +
𝛼

𝑀𝑠
 (

𝑑𝑀
𝑑𝑡

 ×  𝑀) 

where M is the magnetization vector for the YIG/GGG substrate,  is the gyromagnetic ratio, 𝛾

 is the Gilbert damping constant, and Ms refers to the saturation magnetization. In our case, 𝛼

the interface of the sample is two-dimensional. Nevertheless, we can expand the one-

dimensional spin wave propagation to two dimensions by integrating S later.6 For instance, 𝐽

we can assume that the propagation of the spin wave is along z axis (in our experiment, the 



5

injected spin wave propagates along the z direction, see Figure 1 in the main text), and there is 

no damping for the ideal case; thus, from the LLG equation, we can extract the form: 

 using the continuity equation  for the magnetization 
𝐽𝑆 = 𝛾

𝐷
𝑀

(𝑀 × ∇𝑀)
𝑑𝜌
𝑑𝑡

 +  ∇ ∙ 𝐽 =  0

current6 or from the fluctuation-dissipation theorem for a random magnetic field due to 

temperature gradient and electron spin density in NMs (here, Pt).7 Here, we employed the 

former case. Considering an effective magnetic field Heff as

       Heff =  ,                        (2)
𝐾 

𝑀𝑧

𝑀
�̂� + 𝐷∇2𝑀

𝑀

where K is the anisotropy constant, and  is the exchange constant, which is related to stiffness, 𝐷

we then extracted only the z component (spin-wave propagating direction) of 

 , which is obtained by substituting Eq. (2) into Eq. (1).6 In the z 

∂𝑀
∂𝑡

=  ‒ 𝑀 × 𝐾 𝑀𝑧�̂� ‒  
∂ 𝐽𝑠

∂𝑧

direction,  becomes  , which is the form 

∂𝑀
∂𝑡

=  ‒ 𝑀 × 𝐾 𝑀𝑧�̂� ‒  
∂ 𝐽𝑠

∂𝑧
∂𝑀
∂𝑡

|𝑧 =  ‒  
∂ 𝐽𝑠

∂𝑧
|𝑧

, and thus, we can to define  as the magnetization current.8 

𝑑𝜌
𝑑𝑡

 +  ∇ ∙ 𝐽 =  0 𝐽𝑆 = 𝛾
𝐷
𝑀

(𝑀 × ∇𝑀)

BTE analysis (diffusion): Since the spin current is the transport phenomena mediated by 

magnons, based on the conservation of angular momentum,3 BTE must include the distribution 

of the magnons with appropriate boundary conditions. 2

 ,                  (3)
0 =  ‒ 𝑣𝑘 ∙ ∇𝑟𝑓 ‒  

1
ħ

∂𝑓
∂𝑘

 ∙ ħ 
𝑑𝑘
𝑑𝑡

 +  
𝑓0 ‒ 𝑓

𝜏(𝑘)

where f denotes the magnon distribution, is the rate of magnon decay due to (𝑑𝑓
𝑑𝑡)𝑠𝑐𝑎𝑡𝑡
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scattering,3  is the distribution of equilibrium magnon states, and  is the relaxation time.8𝑓0 𝜏(𝑘)

To use , quantum operators for circularly polarized magnons must be 
𝐽𝑆 = 𝛾

𝐷
𝑀

(𝑀 × ∇𝑀)

established, i.e., , where  is the magnon annihilation operator,8 
𝑚 + =  (

2𝛾ħ𝑀
𝑉

)1/2∑
𝑘

𝑒𝑖𝑘𝑟𝑐𝑘
𝑐𝑘

V is the volume of the system, and  denotes the energy unit over the volume due to 
(
2𝛾ħ𝑀

𝑉
)1/2

magnetization. The root mean square method was adopted to express . By substituting 𝑚 + 𝑚 ‒

these operators,  can be expressed as
𝐽𝑆 = 𝛾

𝐷
𝑀

(𝑀 × ∇𝑀)

 ,                              (4)
𝐽𝑆 =

ħ
𝑉∑

𝑘

𝑛𝑘𝑣𝑘

where  is the number operator. After replacing the sum over the Brillouin zone, Eq. 𝑛𝑘 =  𝑐𝑘𝑐 +
𝑘

(4) can be written as, with an equilibrium number of magnons, ,  𝑛0

,               (5)
𝐽𝑆, ∇𝑛 =

‒ ħ

(2𝜋)3∫𝑑3𝑘 𝜏(𝑘)𝑣𝑘[𝑣𝑘 ∙ ∇(𝑛𝑘 ‒ 𝑛0)]

BTE analysis (temperature gradient): Rezende et al. noted that the spin current pumped by the 

thermal gradient, which causes a difference in the Bose–Einstein distribution leading to a 

nonequilibrium excess of magnons, must be taken into account.8 Considering the units in Eq. 

(5), the injected spin current due to the temperature gradient can be written as

.                    (6)
𝐽𝑆, ∇𝑇 =

‒ ħ

(2𝜋)3∫𝑑3𝑘 𝜏(𝑘)
∂𝑛𝑘

∂𝑇
𝑣𝑘[𝑣𝑘 ∙ ∇𝑇]

Therefore, the overall injected spin current is , which is obtained after performing 𝐽𝑆, ∇𝑛 +  𝐽𝑆, ∇𝑇 
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different algebraic operations, such as changing the variables and rearrangement of some 

factors, and by determining the unknown coefficients using the boundary conditions in the 

diffusion theory. We finally obtain the injected spin current at the interface (z = 0)

𝐽𝑠

=  
 𝑔 ↑↓

𝑒𝑓𝑓 𝜏𝑘 𝜏𝑚𝑝𝜋 𝛾 𝑘 2
𝑚𝑘𝐵𝑤𝑍𝐵

4𝜋𝑀
 

1

(2𝜋)3∫𝑑3𝑘 
𝑥2

(𝑒𝑥 - 1)
 

ħ

(2𝜋)3∫𝑑3𝑘 𝑣2
𝑘

𝑒𝑥 𝑥

(𝑒𝑥 ‒ 1)2
∙ ∇𝑇

1

(2𝜋)3∫𝑑3𝑘 
𝑥

(𝑒𝑥 - 1)
  

1

(2𝜋)3∫𝑑3𝑘 𝑣2
𝑘

𝑥

(𝑒𝑥 - 1)

,

    (7)

where ħ is Planck’s constant, , , , , , , and  are effective spin mixing 𝑔 ↑↓
𝑒𝑓𝑓 𝜏𝑘  𝜏𝑚𝑝 𝛾 𝑘𝑚 𝑘𝐵 𝑤𝑍𝐵

conductance, the relaxation time for the magnons, magnon–phonon relaxation time, 

gyromagnetic ratio, value of the maximum wavenumber in the spherical Brillouin zone , 

Boltzmann’s constant, and zone boundary frequency, respectively.3, 8 Further,  and  are 𝑘𝑚 𝑤𝑍𝐵

obtained from the magnon dispersion relation (wk) in YIG. Note that we used a correction factor 

for  by considering various ranges of the spin-mixing conductance reported in other 𝑔↑↓

literatures.

Integrals in : Here, we changed the variable dependence of  from k to T to substitute the 𝐽𝑠 𝜏𝑘

value reported by Basso et al. When substituting (T), Matthiessen’s rule for (T) at low (high) 𝜏 𝜏

temperature is applied.4 From Eq. (7), we must compute four integrals using . The 
𝑥 =  

ħ 𝑤𝑘

𝐾𝐵𝑇

magnon dispersion relation (for YIG) is given by: 9 where 
𝑤𝑘 =  𝛾 𝐻 +  𝑤𝑍𝐵(1 -  cos ( 𝜋 𝑘

2𝑘𝑚
)),

wZB is the zone boundary frequency,8 and  can be obtained by differentiating the dispersion 𝑣𝑘
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relation. By substituting  in , Eq. (7) can be calculated by numerical integration 𝑤𝑘
𝑥 =  

ħ𝑤𝑘

𝐾𝐵𝑇

and using the values listed in Table S1 and S2.

After substituting the results into Eq. (7) , VISHE is obtained using the following equation: 

10

                ,                 (8)
   𝑉𝐼𝑆𝐻𝐸 = 𝑅𝑀𝐿𝑤𝜆𝑁𝑀(2𝑒

ħ )𝜃𝑆𝐻tanh ( 𝑡𝑁𝑀

2𝜆𝑁𝑀
)𝐽𝑠

where RML, w, , , and  are the resistance, sample width, Pt diffusion length, spin 𝜆𝑁𝑀 𝜃𝑆𝐻 𝑡𝑁𝑀

hall angle, and Pt thickness, respectively. By inserting all the related values into Eq. (7), Eq. 

(8) (i.e., RML = 125 Ω for Pt/YIG in our measurement;  = C  with C as the correction 𝑔 ↑↓
𝑒𝑓𝑓 𝑔↑↓

factor as  varies from that reported in the literature8), we computed the total theoretical VISHE 𝑔↑↓

of the Pt/YIG structure. In this paper, three methods of evaluating VISHE are discussed. Rezende 

et al. used the magnon scattering rate with 34 magnon scattering processes for treating .3, 8 𝜏𝑘

To discuss the magnon scattering, different magnon mean collision times depending on the 

temperature must be considered. 4 For magnons at a low temperature, scattering with phonons 

and defects dominates over pure magnon–magnon scattering because of the small number of 

magnon filled states and phonon lifetime in the FM substrate. 3, 11 By contrast, at high 

temperatures, magnon–magnon scattering is also taken into account, which results in different 

orders of temperature-dependence of the magnon relaxation time compared to those at low 

temperatures.4 Thus, we substituted the temperature dependent magnon relaxation time , 𝜏(𝑇)

derived from thermo-magneto dynamic calculations, and the experimental spin Seebeck 

coefficients, which correspond well with experimental results of Basso et al.4, 12 We compared 
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the two calculation results in advance. First, the temperature-dependent VLSSE was compared 

by inserting (T), where original relaxation time  is replaced with (T) in the standard BTE 𝜏 𝜏 𝜏

model (A).4 Next, we calculated the temperature-dependent VLSSE by inserting both  and 𝜏(𝑇)

the scattering rate nq reported by Rezende et al. (B).3 Both the calculations included some 

integrals, which were numerically computed for 10 K intervals over the temperature range of 

0–300 K. The resulting values from (A) and (B) are consistent with each other at T = 300 K, 

because the original magnon relaxation time  is defined differently depending on previous 𝜏𝑘

studies.3, 4, 8, 9 At a high temperature range of 200–300 K, both (A) and (B) show almost the 

same decreasing tendencies (Fig. S2), indicating that sufficient magnon–magnon interactions 

occur; both nq and  are based on magnon–magnon interactions and relaxation 𝜏(𝑇)

mechanisms.3, 4 In contrast, at low temperature range (0–100 K), discrepancies occur because 

of various reasons: the magnon–magnon scattering at low temperatures is not frequent (in 

contrast to those at high temperatures); rather, phonon mediated effects may dominant 

(discussed in the next subsection).11, 13 Further, the dispersion relation slightly changes with 

temperatures,3 because we have fixed the magnon dispersion relation at all the temperatures 

and also included scattering rates in the integral at low temperatures in (B) case. However, it 

cannot be declared that either of these results is right or wrong, for that one has substituted the 

value extracted from magneto-thermodynamics and spin Seebeck experiment, while another 

one has inserted the values from conventional scattering theory. We finally compared the 

computational result by inserting nq only, similar to the calculations of Rezende et al. (C). 

However, at T = 200–300 K, (C) shows much less voltage decreasing tendencies than (A) and 

(B) and rather shows saturation values at high temperatures (Fig. S2). Rezende et al. included 

an additional temperature dependence of the magnon relaxation rate, which vary with T2, and 

the temperature dependence of the magnetization of the YIG/GGG substrate to obtain results 
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that are consistent with the experiment results. 8 Among these computational results, based on 

the fact that we observed nearly same tendencies for temperature dependent LSSE voltage at 

high temperatures (200–300 K), and in order to use (C) we must take steps adding arbitrary 

temperature dependence of magnon relaxation rates and magnetization, we rather decided to 

compare the experimental value with the calculation result (A), where temperature-dependent 

magnon collision time is incorporated in .𝜏(𝑇)
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Fig. S2. Calculations of VISHE based on the BTE model. (a) is (A) VISHE with the substitution 

of  derived by Basso et al. into BTE model, (B) VISHE with  (from Basso et al.) and 𝜏(𝑇) 𝜏(𝑇)

q (from Rezende et al.) both inserted into BTE model. (b) is (C) VISHE with q inserted only, 𝑛 𝑛

where  ( with k around the zone center) remains constant. Among these results, (C) does 𝜏0
𝑘 𝜏𝑘 

not exhibit an actual temperature-dependent VISHE behavior owing to the absence of T 

dependence of  (it was included later in Rezende’s work).𝜏𝑘

Meanwhile, with the experimental results in Pt/YIG bilayer we extracted mean magnon 

collision time, or magnon scattering time at high temperature (T = 180–200 K) from the 

expressions from Eq. (7)(8) to see if the BTE method combined with (T) is in good 𝜏

agreement compared with other studies (Fig. S3). From Basso’s work, at high temperature the 
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magnon scattering time have shown T-4 dependence.4 In our computations from the 

experiments, magnon scattering time have shown -4.07 009 order of T , which is similar to ±  

the result of Basso et al.. The exact value of the magnon scattering time may differ from the 

studies from Basso, since ordinary constant value of  varies from studies and other works4, 8, 𝜏𝑘

9. 

            

Fig. S3. (a) Magnon collision time or magnon scattering time for the Pt/YIG bilayer structure 

obtained from the LSSE measurement. Evidently, the extracted magnon scattering time follows 

a nearly T-4 dependence, similar to the results of Basso et al.

5. Temperature dependence of VISHE by thermally driven magnons
Next, we analyzed properties of thermally driven magnons at low temperatures based on the 

calculation from BTE model. One of the expressions used for estimating  is mentioned below:𝐽𝑠

 ,               (10)
𝐽𝑠~ ∫𝑑𝑥

𝜋23 32𝑘𝐵𝑇

(ħ𝑤𝑍𝐵𝜋2)5/2
( 32(𝑘𝐵𝑇𝑥 - ħ𝛾𝐻)3 𝑒𝑥 𝑥

(𝑒𝑥 - 1)2
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where it is integrated with respect to  . Other integrals in the form of Eq. (10) are also 
𝑥 =  

ħ𝑤𝑘

𝐾𝐵𝑇

present in  (See Eq. (7)). As the integrand has T terms in the numerator, it seems that the 𝐽𝑠

overall , which is proportional to VISHE, tends to shrink as T decreases. However, for the 𝐽𝑠

variable x, its integrating interval ranges from to , where T in the denominator 𝑥 =  0  
𝑥 =  

ħ𝑤𝑘

𝐾𝐵𝑇

indicates that the integrating range is inversely proportional to T. When considering thermally 

driven magnons only, at high temperatures the integrating range for thermal magnons, 

 , dominates as T holds some finite value. As T slowly reaches toward low temperature 
𝑥 =  

ħ𝑤𝑘

𝐾𝐵𝑇

(~50 K), the size of the integration range dominates over the T terms in the integrand. However, 

at low temperature if T reaches toward 0K ( < 50 K), the T terms in the integrand again hold 

some leverage on the whole integral as T runs toward 0 K; hence, the overall  starts to drop 𝐽𝑠

and reaches 0 V at T = 0 K in theoretical calculations. Fig. 4cd in the main text compares 

the calculated VISHE values at each temperature (red symbols for Pt/YIG and blue symbols for 

Pt/ML MoS2/YIG) with the experimental VISHE values (green symbols).  Both Pt/YIG, Pt/ML 

MoS2/YIG follows increasing VISHE tendencies from T = 300 K to 190 K, and error bounds 

between the theoretical evaluation and the experimental values are marked in the figure. At the 

low temperature range, T = 0–100 K, according to the calculation we observed critical 

temperature at which the VISHE reaches maximum value. For Pt/YIG bilayer case (Fig. 4c), the 

maximum temperature dependent VISHE was approximately 62 V, whereas that of Pt/ML 

MoS2/YIG trilayer case was 3.55 V. Note that we have conducted experiments at high 

temperatures only, T = 190–300 K to observe the magnon behavior close to room temperature. 

Nevertheless, the calculations for the low temperature range indicate that the experimental 



13

VISHE would also maximize at around T = 40–50 K and then decrease toward 0 V as T reaches 

0 K. 

The temperature-dependent behavior of the magnons based on the physics is discussed. At 

high temperature, under the state of thermally excited magnons, as in our case, they have some 

limited filled states at some T at high temperature.8, 9 At low temperature region, magnon – 

magnon scattering does not occur frequently than it was at high temperatures, rather, phonon 

mediated effect may have been considered to be significant.11, 13 Basically, phonons are less 

excited at low temperatures while magnons follow typical quadratic dispersion relations at low 

temperatures, thus having less chance for magnon-phonon interaction.8, 11, 14 Calculated curves 

from the figures at the temperature range from T = 0 to 40 K can be interpreted as increasing 

contribution of the excited phonon to the system as T increases. At the vicinity of the maximum 

VISHE, a Umklapp scattering region exists, which limits the blindly increasing phonon 

excitations and contributes to the T-1 dependence above the critical temperature.11, 14, 15 Above 

the critical temperature, the magnon–phonon interactions possibly cause some deviation from  

the T-1 dependence, where now significant amount of magnons are driven so that the interaction 

between magnon and phonon becomes inevitable. However, this suggested mechanism still 

needs to be verified clearly through future studies.4, 11, 16

Table S1. Parameters for calculating Js of the Pt/YIG bilayer. The magnon–phonon relaxation 

time, gyromagnetic ratio, magnon maximum wavenumber, and zone boundary frequency are 

taken from the literature in CGS units.3
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Parameter Value Parameter Value

(s-1
 )𝜏𝑚𝑝 1.0 × 1012 (cm-1

 )𝑘𝑚 1.7 × 107

(GHz/kOe)𝛾 2  28𝜋 ×  (THz)𝑤𝑍𝐵 14𝜋
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Table S2. Parameters for calculating VISHE of the samples. The spin diffusion length  and 𝜆𝑃𝑡

spin mixing conductance  (per unit area) of the Pt/YIG bilayer and Pt/ML MoS2/YIG 𝑔↑↓

trilayer, respectively, are taken from previous syudies.3, 17 Specifically,  for the Pt/ML 𝜆𝑃𝑡

MoS2/YIG trilayer is obtained from the ratio between  and , reported 𝜆𝑃𝑡(𝑃𝑡 𝑌𝐼𝐺) 𝜆𝑃𝑡(𝑃𝑡 𝑀𝑜𝑆2/𝑌𝐼𝐺)

in other studies.18, 19 Conversely, when calculating Js from VISHE,  is converted to the unit of 𝑔↑↓

Ω-1m-1 to fit in the units for Equation (3) from the main paper.

Sample  (S/m)𝜎𝑃𝑡  (nm)𝑡𝑃𝑡  (nm)𝜆𝑃𝑡  (cm-2)𝑔↑↓

Pt/YIG 2.00 × 106 5 3.73 1.0 × 1014

Pt/ML MoS2/YIG 2.44 × 106 5.7 1.85 5.0 × 1013
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