Supporting Information

Enhancing the solubility of Mn in AgSbSe₂ for high thermoelectric performance through entropy engineering

Zheng Ma, Yubo Luo*, Wang Li, Chengjun Li, Yingchao Wei, Abubakar-Yakubu Haruna, Zhihong Zhang, Xin Li, Qinghui Jiang and Junyou Yang*

State Key Laboratory of Materials Processing and Die & Mould Technology
School of Materials Science and Engineering
Huazhong University of Science and Technology
Wuhan, 430074 P. R. China.
* Corresponding author.
Email: luoyubo@hust.edu.cn (Y. Luo); jyyang@mail.hust.edu.cn (J. Yang)

Results and Discussion:

1. Lorenz number calculation based on the single parabolic band

In our work, the Lorenz number is obtained based on the single parabolic band:

$$L = \left(\frac{\kappa_{B}}{e}\right)^{2} \left[\frac{\left(r + \frac{7}{2}\right)F_{r+\frac{5}{2}}(\eta)}{\left(r + \frac{3}{2}\right)F_{r+\frac{1}{2}}(\eta)} - \left(\frac{\left(r + \frac{5}{2}\right)F_{r+\frac{3}{2}}(\eta)}{\left(r + \frac{3}{2}\right)F_{r+\frac{1}{2}}(\eta)}\right)^{2}\right],$$
 (1)

In the equations above the integral $F_n(\eta)$ is defined by

$$\eta = \frac{E_f}{k_B T},\tag{3}$$

Where $F_n(\eta)$ is the Fermi integral function of order n, and η is called the reduced Fermi energy. η can be obtained by the following formula:

$$S = \pm \frac{k_B}{e} \left(\frac{\left(r + \frac{5}{2}\right) F_{r+\frac{3}{2}}(\eta)}{\left(r + \frac{3}{2}\right) F_{r+\frac{1}{2}}(\eta)} - \eta \right)$$
(3)

Using the tested Seebeck coefficients, solve the above equation to get η . The scattering factor r is $-\frac{1}{2}$ in acoustic phonon scattering.

The average sound velocities (V_a) were calculated based on:

$$V_{a} = \left[\frac{1}{3}\left(\frac{2}{V_{T}^{3}} + \frac{1}{V_{l}^{3}}\right)\right]^{-\frac{1}{3}}$$

2. Figures

Figure S1. (A) Powder XRD patterns, (B) lattice parameters of $AgSb_{1-x}Mn_xSe_2$ (x = 0, 0.06, 0.08, 0.1) at room temperature. (C) - (H) Rietveld refinement result using X-ray diffraction data for (AgSbSe2)1-x(MnSe)x (x = 0, 0.1, 0.2, 0.4, 0.5, 1).

Figure S2. Powder XRD patterns for $(AgSbSe_2)_{1-x}(MnSe)_x$ (x = 0.2, 0.24, 0.26, 0.28).

Figure S3. Wavelength dispersion spectrometer (WDS) images of elemental Ag, Mn, Sb and Se corresponding to panel C in Figure 2B.

Figure S4. Electronic thermal conductivities as functions of temperature for $(AgSbSe_2)_{1-x}(MnSe)_x$ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5).

Figure S5. Powder XRD patterns for $(AgSbSe_2)_{0.7}(Mn_{1-y}Se)_{0.3}$ (*y* = 0.005, 0.01, 0.015, 0.02).

Figure S6. The Hall carrier concentration and Hall mobility of $(AgSbSe_2)_{0.7}(Mn_{1-y}Se)_{0.3}$ (y = 0.005, 0.01, 0.015, 0.02) at room temperature.

Figure S7. Power factors as a function of temperature for $(AgSbSe_2)_{0.7}(Mn_{1-y}Se)_{0.3}$ (*y* = 0.005, 0.01, 0.015, 0.02).

Figure S8. Electronic thermal conductivities as functions of temperature for $(AgSbSe_2)_{0.7}(Mn_{1-y}Se)_{0.3}$ (y = 0.005, 0.01, 0.015, 0.02).

3. Table

Table S1. Density ρ of $(AgSbSe_2)_{1-x}(MnSe)_x$ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) and $(AgSbSe_2)_{0.7}(Mn_{1-y}Se)_{0.3}$ (y = 0.005, 0.01, 0.015, 0.02) at room temperature

Sample	ho (g cm ⁻³)
AgSbSe ₂	6.35
MnSe	5.51
x = 0.1	6.26
x = 0.2	6.17
x = 0.3	6.10
x = 0.4	6.02
x = 0.5	6.00
y = 0.005	6.01
y = 0. 01	6.05
y = 0.015	6.04