Bandgap Engineering of MXene Compounds for Water Splitting

Diego Ontiveros, Francesc Viñes and Carmen Sousa*

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.

*E-mail: c.sousa@ub.edu

Table S1 Bandgap values, E_g , comparison, with and without vdW correction using PBE0 or PBE0 with Grimme D3, of selected O-terminated MXenes, with stacking and O adatoms positions specified. All values are given in eV.

	$E_{\rm g}$ (PBE0)	$E_{\rm g}$ (PBE0-D3)
Zr ₂ CO ₂ ABC H _M	2.262	2.262
Hf ₂ CO ₂ ABC H _M	2.744	2.744
Sc ₂ CO ₂ ABC H _{MX}	3.786	3.786
Y ₂ NO ₂ ABC H _{MX}	3.177	3.177
W ₂ NO ₂ ABC H _M	0	0
Mo ₂ NO ₂ ABC H _M	0	0

Table S2 Comparison of the relative energy of different O-termination positions when using PBE without or with Grimme D3 dispersive forces correction, taking ABC H_M structure as reference for the Zr_2CO_2 ABC and W_2NO_2 ABA structures.

	Zr ₂ CO ₂ ABC									
	$\mathbf{H}_{\mathbf{M}}$	H _{MX}	H _X							
PBE	0	0.87	1.96							
PBE-D3	0	0.86	1.94							
	W	2NO ₂ AI	BA							
	Η	H _{MX}	H _X							
PBE	-0.96	-1.37	-1.64							
PBE-D3	-0.93	-1.35	-1.54							

M		(С	Ν					
	ABC		Al	BA	A	BC	A	BA	
	a (Å) d (Å)		a (Å)	d (Å)	a (Å)	<i>d</i> (Å)	a (Å)	<i>d</i> (Å)	
Sc	3.328	2.409	3.257	2.686	3.218	2.448	3.165	2.675	
Y	3.588	2.661	3.535	2.910	3.481	2.681	3.361	3.015	
Ti	3.075	2.250	3.041	2.498	2.978	2.287	2.878	2.652	
Zr	3.274 2.544		3.240	2.808	3.230	2.519	3.092	2.935	
Hf	3.212	2.544	3.168	2.809	3.163	2.523	3.050	2.909	
V	2.900	2.174	2.765	2.563	2.867	2.125	2.690	2.598	
Nb	3.130	2.388	2.975	2.819	3.131	2.308	2.913	2.875	
Та	3.084	2.436	2.965	2.811	3.082	2.363	2.888	2.905	
Cr	2.807	2.112	2.638	2.521	2.821	2.066	2.606	2.498	
Mo	2.925	2.512	2.850	2.742	2.804	2.815	2.817	2.773	
W	2.889	2.625	2.847	2.788	2.785	2.906	2.789	2.902	

Table S3 Calculated lattice parameters, a, and MXene widths, d, for the studied pristine M₂X MXenes with ABC or ABA stacking. All values are given in Å.

Fig. S1 Total and projected DOS, calculated with PBE, for all M_2X systems, considering the two possible stackings, ABC and ABA. Energies corrected to E_F , indicated with a dashed black line. The particular M_2X compound and stacking are labelled on top of the image.

X	M	ABC							ABA						
		H	[_M	\mathbf{H}_{1}	мх	Н	[_X	I	I	H	МХ	Н	[_X		
		a (Å)	<i>d</i> (Å)	a (Å)	<i>d</i> (Å)	a (Å)	<i>d</i> (Å)	a (Å)	<i>d</i> (Å)	a (Å)	<i>d</i> (Å)	a (Å)	<i>d</i> (Å)		
	Sc	3.208	4.918	3.405	3.892	3.350	4.109	3.224	4.987	3.249	4.787	3.356	4.187		
	Y	3.554	4.870	3.702	4.067	3.641	4.332	3.537	5.034	3.535	5.066	3.635	4.439		
	Ti	3.011	4.467	2.986	4.616	2.941	4.850	3.041	4.494	3.012	4.659	2.965	4.896		
	Zr	3.303	4.697	3.268	4.884	3.210	5.157	3.323	4.761	3.272	4.969	3.212	5.226		
	Hf	3.372	4.379	3.212	4.828	3.170	5.089	3.258	4.708	3.228	4.897	3.172	5.157		
С	V	2.875	4.456	2.840	4.591	2.802	4.742	2.852	4.692	2.818	4.802	2.770	4.937		
	Nb	3.132	4.722	3.093	4.863	3.050	5.037	3.163	4.739	3.081	5.061	3.026	5.239		
	Ta	3.113	4.700	3.077	4.835	3.044	5.010	3.149	4.703	3.050	5.072	3.008	5.239		
	Cr	2.860	4.477	2.768	4.646	2.668	4.860	2.698	4.864	2.671	4.899	2.650	4.933		
	Mo	3.082	4.539	2.917	5.149	2.876	5.217	2.899	5.260	2.886	5.260	2.870	5.274		
	W	3.100	4.526	2.896	5.248	2.874	5.285	2.890	5.319	2.890	5.301	2.879	5.297		
	Sc	3.218	4.464	3.230	4.455	3.190	4.658	3.197	4.669	3.242	4.538	3.208	4.713		
	Y	3.510	4.758	3.520	4.697	3.476	4.913	3.489	4.971	3.516	4.821	3.484	4.983		
	Ti	2.978	4.454	2.938	4.635	2.894	4.826	2.998	4.482	2.936	4.723	2.891	4.913		
	Zr	3.248	4.740	3.221	4.880	3.187	5.083	3.271	4.771	3.231	4.974	3.161	5.217		
	Hf	3.194	4.666	3.163	4.824	3.131	5.027	3.213	4.710	3.176	4.920	3.119	5.159		
Ν	V	2.871	4.406	2.801	4.678	2.741	4.843	2.832	4.643	2.773	4.808	2.729	4.909		
	Nb	3.132	4.618	3.025	5.045	2.989	5.150	3.011	5.188	3.003	5.219	2.978	5.250		
	Ta	3.120	4.568	2.997	5.060	2.971	5.137	2.974	5.232	2.978	5.228	2.958	5.251		
	Cr	2.926	4.305	2.752	4.759	2.670	4.866	2.690	4.782	2.659	4.868	2.642	4.887		
	Mo	2.837	5.412	2.828	5.437	2.861	5.242	2.876	5.258	2.848	5.332	2.882	5.207		
	W	2.820	5.554	2.817	5.581	2.866	5.303	2.857	5.363	2.847	5.405	2.881	5.252		

Table S4 Calculated lattice parameters, a, and MXene widths, d, for the six studied M₂XO₂ MXenes with ABC or ABA stacking. All values are given in Å.

Fig. S2 Evolution of the cell parameter, *a*, along *M* elements in the studied O-terminated C-MXenes (top) and N-MXenes (bottom) for ABC (left) and ABA (right) stackings, considering the different hollow positions.

Fig. S3 Evolution of the MXene width, *d*, along *M* elements in the studied O-terminated C-MXenes (top) and N-MXenes (bottom) for ABC (left) and ABA (right) stackings, considering the different hollow positions.

Table S5 Relative energy, ΔE , in eV, for each O-functionalized MXene, with respect the corresponding ABC H_M case, considering ABC/ABA stacking and different hollow positions. Values in bold indicate the most energetically stable structure.

				С		Ν							
	ABC			ABA			ABC				ABA		
M	$\mathbf{H}_{\mathbf{M}}$	H _{MX}	H _X	Н	H _{MX}	H _X	$\mathbf{H}_{\mathbf{M}}$	H _{MX}	H _X	Н	H _{MX}	H _X	
Sc	0.00	-0.60	-0.46	0.01	-0.33	0.13	0.00	0.30	0.77	0.23	0.66	1.06	
Y	0.00	-0.46	-0.31	0.20	0.53	0.33	0.00	0.20	0.62	0.28	0.64	0.96	
Ti	0.00	0.79	1.81	0.35	1.16	2.07	0.00	0.55	1.23	0.33	0.86	1.51	
Zr	0.00	0.87	1.96	0.65	1.51	2.47	0.00	0.41	1.08	0.59	1.00	1.68	
Hf	0.00	0.74	1.94	0.38	1.38	2.48	0.00	0.45	1.15	0.62	1.06	1.84	
V	0.00	0.27	0.63	0.35	0.53	0.82	0.00	0.03	0.05	-0.04	-0.01	-0.08	
Nb	0.00	0.16	0.52	0.69	0.94	1.19	0.00	0.24	-0.11	0.55	0.27	-0.06	
Та	0.00	0.16	0.56	0.71	1.01	1.31	0.00	0.27	-0.16	0.62	0.23	-0.13	
Cr	0.00	-0.09	-0.21	-0.17	-0.31	-0.59	0.00	0.36	0.29	0.33	0.19	-0.02	
Mo	0.00	-0.38	-1.06	-0.50	-0.93	-1.46	0.00	-1.34	-1.11	-0.86	-1.18	-1.41	
W	0.00	-0.29	-1.16	-0.55	-1.02	-1.79	0.00	-0.76	-1.15	-0.96	-1.37	-1.64	

X	M			A	BC		ABA						
		Н	Í _M	Η	МХ	Η	IX]	H	Η	MX	H	I _X
		PBE	PBE0	PBE	PBE0	PBE	PBE0	PBE	PBE0	PBE	PBE0	PBE	PBE0
	Sc			2.00	3.79	2.12	3.89					1.80	3.61
	Y			1.46	3.11	1.63	3.45					1.19	3.02
	Ti	0.26	1.64	0.79	2.24	0.43	1.86	0.09	1.44	0.58	2.15	0.52	2.15
	Zr	0.87	2.26	1.06	2.43	0.62	2.01	0.56	1.90	0.80	2.18	0.93	2.38
	Hf	1.29	2.74	1.06	2.46	0.61	2.06	0.67	2.07	0.78	2.20	0.97	2.37
С	V						0.77		0.46				0.67
	Nb				0.63		0.12		0.56		0.97		
	Ta				0.63				0.75		0.92		
	Cr		1.27			0.14	0.71		0.57		1.65		0.66
	Mo				—		0.65		0.49				0.64
	W						0.66		0.66				0.63
	Sc		0.91	0.68	2.93	1.03	3.66			0.33	2.58	1.10	3.49
	Y			0.86	3.18	1.07	3.68		—	0.48	2.83	1.16	3.49
	Ti		0.37				—		1.66		0.85		
	Zr						—		1.00		0.98		
	Hf						—		0.64		0.82		
Ν	V				1.17		0.16		—				
	Nb				0.41		—		0.40		0.59		
	Ta						—		—				
	Cr						—		0.64		0.04		
	Mo						—						
	W						—						

Table S6 Calculated bandgap, E_g , in eV, as obtained using PBE or PBE0 functionals, for the O-terminated MXenes in the six different structures studied. Bold values indicate direct bandgap.

Fig. S4 Total and projected DOS, calculated with PBE0, for all M_2XO_2 cases, considering the six structures studied. Energies corrected to VBM or E_F , indicated with a dashed black line. The M_2XO_2 species, stacking and O position are specified in each plot.

Nb₂NO₂

Fig. S5 Average electrostatic potential, V, in eV, as a function of *z* coordinate along the vacuum direction, in Å, for the Zr_2CO_2 ABC H_M system. The vacuum energy, V_v, is indicated as the red dashed line.

Fig. S6 Relation between the absolute surface dipole moment, *P*, and the workfunction, ϕ , for the Group III N-MXenes. On the right are present the colour coded linear regression equations.

Fig. S7 Comparison of (a), (c) PBE and (b), (d) PBE0 bandstructures for Sc_2CO_2 and Y_2CO_2 , respectively, computed on the most stable structure, ABC H_{MX}. Energy levels are referred to the VBM level.

