Supporting information for

Toward highly transparent and colorless DSSC featuring new thienyl pyrrolopyrrole cyanine dyes

Table of content

1. General Methods	2
2. Experimental Section	2
3. Spectroscopic and Electrochemical Properties	4
4. Quantum Chemical Calculations	6
5. Steady-state and Time-resolved Spectroscopies	16
5.1-Transient absorption spectra of TB202 in solution	16
5.2-Global analysis	16
6. Photovoltaic Cells	19
7. NMR and HRMS Spectra	21
10. References	

1. General Methods

¹H and ¹³C NMR spectra were recorded on an AVANCE 300 MHz BRUKER, AVANCE III 400 MHz BRUKER. Chemical shifts for ¹H NMR spectra are calibrated on residual protons in the deuterated solvent (CDCl₃ δ = 7.26 ppm for ¹H and δ = 77.16 ppm for ¹³C). Spectra were recorded at room temperature, chemical shifts are given in ppm and coupling constants in Hz. High-resolution mass (HRMS) spectra were obtained by electrospray ionization coupled with high resolution ion trap orbitrap (LTQ-Orbitrap, ThermoFisher Scientific,) working in ion-positive or ion-negative mode. Electrochemical measurements were performed with a potentiostat-galvanostat Autolab PGSTAT 302N controlled by resident GPES software (General Purpose Electrochemical System 4.9) or NOVA software using a conventional single-compartment three-electrodes cell. The working electrode was a glassy carbon one. The auxiliary electrode was a stainless wire and the reference one was the saturated potassium chloride calomel electrode (SCE). The supporting electrolyte was 0.1 N Bu4NPF6 in DMF and solutions were purged with argon before the measurements. All potentials are quoted relative to SCE. In all the presented experiments the scan rate was 100 mV/s.

UV-Visible absorption spectra were recorded on a UV-2401PC Shimadzu spectrophotometer using 1 cm path length cells. Emission spectra were recorded on a SPEX Fluoromax-4 Jobin Yvon fluorimeter (1 cm quartz cells). Emission spectra are corrected in near-infrared part.

2. Experimental Section

Compound **1**, **2** and **4** were prepared according to literature.^[1,2]

Compound 3. In a sealable tube, **1** (0.6 g, 0.91 mmol), **2** (0.63 g, 2.00 mmol, 2.2 eq), and K₂CO₃ (0.62 g, 4.56 mmol, 5 eq) were placed under argon atmosphere and dissolved in THF (20 mL) and water (6 mL). The solution was degassed 30 minutes in an ultrasonic bath and Pd(PPh₃)₄ (0.094 g, 0.081 mmol, 0.2 eq) was added. The reaction mixture was stirred at 85°C overnight. The reaction was cooled to room temperature, quenched with water, extracted 3 times with ethyl acetate, dried over magnesium sulfate and solvents were removed under reduce pressure. The crude was then heated at 180 °C for 30 minutes in the oven. After cooling to room temperature, the resulting solid was dissolved in THF and filtrated through celite. After solvents removal, the product was taken up in cyclohexane and filtrated through PTFE membrane to afford the desired compound as a violet solid (0.33 g, 54%).

NMR (¹H, THF, 400 MHz) δ (ppm): 10.16 (s, 2H), 8.58 (d, ³J=4.04 Hz, 2H), 7.62 (d, ⁴J=1,74 Hz, 4H), 7.69 (d, ³J=4.03 Hz, 2H), 7.72 (t, ⁴J=1.72 Hz, 2H), 1.52 (s, 36H)

NMR (¹³C, THF, 100 MHz) δ (ppm): 159.5, 149.6, 148.3, 133.9, 133.0, 132.7, 131.1, 131.0, 130.0, 129.9, 129.4, 128.1, 126.5, 126.3, 126.2, 125.8, 122.7, 120.9, 118.4, 107.9, 32.7, 28.8

HRMS (ASAP+) m/z: $[M+H]^+$ calculated for C₄₂H₄₉N₂O₂S₂: 677.3235; found: 677.3254. Δ =2.8ppm

Compound 5. **3** (0.150 g, 0.222 mmol) and **4** (0.10 g, 0.055 mmol, 2.5 eq) were heated to reflux in anh. toluene under argon. Phosphoryl chloride (0.17 mL, 1.78 mmol, 8 eq) was then added. The reaction was monitored by thin-layer chromatography. As soon as complete consumption of **3** or the concentration of by-products increased, the reaction was quenched with water and

extracted 3 times with ethyl acetate. The organic layer was dried over MgSO₄ and solvents were evaporated. The crude product was treated with methanol in an ultrasonic bath. The solid was collected by filtration and washed with methanol until the filtrate was colorless to afford the desired compound as a dark green solid (0.093 g, 43%).

NMR (¹H, CDCl₃, 300 MHz) δ (ppm): 13.74 (s, 2H), 8.68 (d, ³J=5.22 Hz, 2H), 8.25 (m, 2H), 7.60 (dd, ⁴J=3.87 Hz, ⁴J=1.23 Hz, 2H), 7.54 (m, 6H), 7.46 (t, ⁴J=1.35 Hz, 2H), 7.43 (d, ⁴J=2.88 Hz, 2H), 3.97 (s, 6H), 1.41 (s, 36H)

NMR (¹³C, CDCl₃, 75 MHz) δ (ppm): 165.3, 156.6, 151.6, 150.0, 148.2, 145.0, 138.4, 136.1, 136.1, 132.6, 128.4, 123.3, 123.2, 120.8, 120.8, 119.7, 118.0, 116.6, 52.7, 34.9, 31.4, 29.7

HRMS (ES+) m/z: $[M+Na]^+$ calculated for $C_{60}H_{60}N_6O_4S_2Na$: 1015.4015; found: 1015.3998. Δ =-1.7ppm.

Compound 6. Under argon atmosphere, **5** (0.035 g, 0.087 mmol) and *N*,*N*-diisopropylethylamine (0.123 mL, 0.705 mmol, 20 eq) were heated to reflux in dry dichloromethane. $BF_3 \cdot Et_2O$ (0.17 mL, 1.41 mmol, 40 eq) was added dropwise and the mixture was heated to reflux for 1h. The reaction mixture was quenched with water, extracted three times with dichloromethane and dried over MgSO₄. After removing the solvent, the crude product was purified by column chromatography using dichloromethane as eluent to afford the desired compound as a purple solid (0.038 g, 100%).

NMR (¹H, CDCl₃, 300 MHz) δ (ppm): 8.48 (d, ³J=6.59 Hz, 2H), 8.28 (d, ⁴J=1.03 Hz, 2H), 7.69 (dd, ³J=6.63 Hz, ⁴J=1.57 Hz, 2H), 7.63 (d, ³J=3.92 Hz, 2H), 7.53 (d, ⁴J=1.73 Hz, 4H), 7.48 (d, ³J=3.82 Hz, 2H), 7.40 (t, J=1.71 Hz, 2H), 3.97 (s, 6H), 1.37 (s, 36H)

HRMS (ES+) m/z: $[M+Na]^+$ calculated for $C_{60}H_{58}N_6O_4S_2^{19}F_4^{10}B_2Na$: 1109.4054; found: 1109.4034. Δ =-2.0ppm.

Compound TB179. **6** (0.040, 0.0371 mmol) was stirred at room temperature in EtOH (10 mL) and THF (3.5 mL). A solution of LiOH (0.020 g, 0.743 mmol, 20 eq) in water (5 mL) is added dropwise in the reaction mixture and stirred for 2h. Aqueous HCI (2M) was added slowly until pH = 4. The remaining solution is extracted 3 times with ethyl acetate. After evaporation, the crude product was treated with dichloromethane in an ultrasonic bath. The solid was collected by filtration to afford the desired compound as a purple solid (0.028 g, 72%).

NMR (¹H, CDCl₃/CD₃OD 9:1, 300 MHz) δ (ppm): 8.35 (d, ³J=6.6 Hz, 2H), 8.13 (s, 2H), 7.60 (d, ³J=5.58 Hz, 2H), 7.47 (s, 2H), 7.38 (s, 4H), 7.32 (d, ⁴J=3.27 Hz, 2H), 7.27 (s, 2H), 1.21 (s, 36H)

HRMS (ES-) m/z: $[M]^-$ calculated for $C_{82}H_{72}{}^{10}B_2N_6O_4S_2$: 1056.3686; found: 1056.3730. Δ =4.2ppm.

Compound 7. Under argon atmosphere, **5** (0.040 g, 0.040 mmol) and *N*,*N*-disopropylethylamine (0.07 mL, 0.40 mmol, 10 eq) were heated to reflux in dry dichloromethane. Chloro(diphenyl)borane (0.1 mL) was added dropwise and the mixture was heated to reflux for 10min. The reaction mixture was quenched with water, extracted three times with dichloromethane and dried over MgSO₄. After removing the solvent, the crude

product was purified by column chromatography using dichloromethane/petroleum ether : 7/3 as eluent to afford the desired compound as a purple solid (0.014 g, 26%).

NMR (¹H, CDCl₃, 300 MHz) δ (ppm): 8.01 (d, ³J=6.87 Hz, 2H), 7.98 (d, ⁴J=1.55 Hz, 2H), 7.34 (t, ⁴J=1.65 Hz, 2H), 7.21 (m, 26H), 6.82 (d, ³J=3.73 Hz, 2H), 6.30 (d, ³J=3.76 Hz, 2H), 3.82 (s, 6H), 1.35 (s, 36H)

HRMS (ES+) m/z: $[M+Na]^+$ calculated for $C_{84}H_{78}N_6O_4S_2^{10}B_2Na$: 1342.5646; found: 1342.5643. Δ =-0.2ppm.

Compound TB202. 7 (0.014, 0.011 mmol) was stirred at room temperature in THF (5 mL). A solution of LiOH (0.005 g, 0.212 mmol, 20 eq) in water (1 mL) is added dropwise to the reaction mixture and stirred for 1h. Aqueous HCI (2M) was added slowly until pH = 4. The remaining solution is extracted three times with ethyl acetate. After evaporation, the crude product was dissolved in dichloromethane and petroleum ether was added. The resulting precipitate was collected by filtration and washed with petroleum ether to afford the desired compound as a dark purple solid (0.012 g, 87%).

NMR (¹H, CDCl₃/CD₃OD 9:1, 300 MHz) δ (ppm): 8.02 (m, 4H), 7.34 (t, ⁴J=2.07 Hz, 4Hz), 7.22 (m, 26H), 6.82 (d, ³J=4.02 Hz, 2H), 6.30 (d, ³J=3.84 Hz, 2H), 1.34 (s, 36H)

HRMS (ES+) hm/z: $[M]^+$ calculated for $C_{82}H_{72}N_6O_4S_2{}^{10}B_2$: 1288.5315; found: 1288.5350. Δ =2.7ppm.

3. Spectroscopic and Electrochemical Properties

Figure S1. *Pictures of compound* **TB207**^[3] *and* **TB202** *solubilized in DMF solution at room temperature.*

Figure S2. Electrochemical properties of **TB179** in supporting electrolyte (0.1 N Bu_4NPF_6 in DMF), scan rate = 100 mV/s.

Figure S3. Electrochemical properties of **TB202** in supporting electrolyte (0.1 N Bu₄NPF₆ in DMF), scan rate = 100 mV/s.

4. Quantum Chemical Calculations

Methods. The dyes were modelled without any structural simplification using the same protocol as in our previous work.^[3] We use a computational strategy relying on TD-DFT combined with the popular Polarizable Continuum Model (PCM)^[4] for simulating solvent effects (here DMF).

All calculations were achieved with the Gaussian16.A03 program,^[5] with improved selfconsistent field (10⁻¹⁰ a.u.) and geometry optimization (10⁻⁵ a.u.) thresholds. During the optimizations and frequency calculations we used the finest DFT integration grid available in Gaussian 16, the so-called *superfinegrid* whereas in the CP-KS procedure the *ultrafine* grid was used. Default grid were used for the SP calculations. Point group symmetry (here *Ci*) was enforced during the calculation which led to true minima (no imaginary frequency). The DFT and TD-DFT calculations use Truhlar's M06-2X meta-GGA hybrid functional,^[6] a choice justified as this functional tends to provide consistent (high correlation) energies with respect to experimental data.^[7] Following our approach for computing 0-0 energies,^[7] the 6-31G(d) atomic basis set was selected for geometries and vibrations whereas the 6-311+G(d) basis set is chosen for obtaining total and transition energies. We have optimized and computed frequencies on both the ground and excited states, and no imaginary frequencies were found. In combining PCM and TD-DFT, we used the LR model for optimization/frequencies, and the cLR² model^[8] for energies.

Additional theoretical results.

Table S1. Summary of the vertical absorption and emission data computed for **TB179** and **TB202**: Symmetry, vertical excitation wavelength and related oscillator strength. Note that the reported absorption values are obtained in non-equilibrium PCM limit, whereas the emission is determined in the equilibrium limit. In both cases, LR-PCM is applied here.

		TB179			TB202	
	Sym	λ ^{vert} (nm)	f	Sym	λ ^{vert} (nm)	f
S ₀ -S ₁	Au	668	0.919	Au	688	0.935
S_0-S_2	Ag	452	0.000	Au	465	0.003
S_0-S_3	Au	445	0.805	Ag	456	0.000
S_0-S_4	Ag	394	0.000	Ag	427	0.000
S_0-S_5	Au	377	0.111	Ag	413	0.000
S_0-S_6				Au	387	0.025
S_0-S_7				Ag	353	0.000
S ₁ -S ₀	A _u	749	0.844	Au	830	1.146

Cartesian coordinates. Below are the Cartesian coordinates (Å) of the different systems, as obtained at the PCM(DMF)-M06-2X/6-31G(d) level of theory, together with the computed Gibbs energies (in Hartree). All systems are true minima (no imaginary frequency).

TB179 – Ground-State – *G*= -4115.723896 au

С	-0.6252670	1,6242930	0.0928680
C	-1 7100040	-0 3602730	0 3383130
C	-0 3247060	-0 6328800	0 0809540
c	0.3247060	0.6328800	-0.0000540
c	0.0247000	1 (242020	0.0009540
C	0.6252670	-1.6242930	-0.0928680
C	1.7100040	0.3602730	-0.3383130
С	2.8332300	1.1/98890	-0.41/54/0
С	-2.8332300	-1.1798890	0.4175470
С	-0.4974750	3.0469800	-0.1617220
С	0.0959950	3.5595440	-1.2913280
С	0.1046750	4.9741170	-1.3216150
Н	0.5035850	2.9278370	-2.0733100
С	-0.4587850	5.5362420	-0.2025770
Н	0.5417110	5.5574820	-2.1233590
С	0.4974750	-3.0469800	0.1617220
С	-0.0959950	-3.5595440	1.2913280
C	-0.1046750	-4.9741170	1.3216150
н	-0 5035850	-2 9278370	2 0733100
C	0 4587850	-5 5362420	0 2025770
U U	-0 5417110	-5 5574920	2 1222500
п N	1 9220600	-5.5574620	2.1233390
IN	1.0329690	-1.0122470	-0.4024210
N	-1.8329690	1.0122470	0.4024210
C	2.7559210	2.5580480	-0.0850920
Ν	2.7703440	3.6795550	0.2142400
С	-2.7559210	-2.5580480	0.0850920
Ν	-2.7703440	-3.6795550	-0.2142400
С	4.1458260	0.6490680	-0.6814320
С	5.2808010	1.4828860	-0.7803050
Ν	4.3015880	-0.6862330	-0.8419850
С	6.5133320	0.9311520	-1.0451540
Н	5.1679330	2.5520570	-0.6496430
С	5.5176260	-1.2240960	-1.1040420
С	6.6464540	-0.4560280	-1.2158710
Н	5.5337120	-2.3014620	-1.2152800
С	-4.1458260	-0.6490680	0.6814320
C	-5.2808010	-1.4828860	0.7803050
N	-4 3015880	0 6862330	0 8419850
C	-6 5133320	-0 9311520	1 0451540
U U	-5 1679330	-2 5520570	0 6496430
C	-5 5176260	1 2240960	1 1040420
c	-5.5176260 6.6464640	1.2240900	1 2150710
	-0.0404340	0.4360260	1.2150/10
н	-5.5337120	2.3014620	1.2152800
в	-3.1407020	1.7654310	0.7113230
В	3.140/020	-1.7654310	-0./113230
Н	-7.6104520	0.9006710	1.4258260
Н	7.6104520	-0.9006710	-1.4258260
С	-7.7464100	-1.7776730	1.1613720
0	-8.8389220	-1.3213370	1.3943920
0	-7.4955310	-3.0744220	0.9789450
Н	-8.3347060	-3.5628050	1.0671640
С	7.7464100	1.7776730	-1.1613720
0	8.8389220	1.3213370	-1.3943920
0	7.4955310	3.0744220	-0.9789450
Н	8.3347060	3.5628050	-1.0671640
F	-3,4889760	2.6287240	-0.3046300
F	-3.0546950	2,4241870	1,9247440
- न	3 4889760	-2 6287240	0 3046300
- न	3 0546950	-2 4241870	-1 9247440
-		- · · - · · · / / / / / / / / / / / / /	エ・ノムコノコゴリ

С	0.6059480	-6.9652390	-0.1145290
С	0.6373780	-7.4087560	-1.4458430
С	0.7103700	-7.8939420	0.9201440
C	0 7702180	-8 7604080	-1 7457640
11	0 5244620	6 6707020	2 2422050
п	0.0344030	-0.0707930	-2.2423030
C	0.8349870	-9.2630600	0.654/140
Н	0.7149360	-7.5378590	1.9466920
С	0.8640410	-9.6688530	-0.6786710
Н	0.9642390	-10.7243350	-0.9082370
С	-0.6059480	6.9652390	0.1145290
C	-0 7103700	7 8939420	-0 9201440
	0.7103700	7.0000420	1 4450420
C a	-0.03/3/80	7.4087360	1.4400400
С	-0.8349870	9.2630600	-0.654/140
H	-0.7149360	7.5378590	-1.9466920
С	-0.7702180	8.7604080	1.7457640
Н	-0.5344630	6.6787930	2.2423050
С	-0.8640410	9.6688530	0.6786710
ч	-0 9642390	10 7243350	0 9082370
	0.9042390	10.7245550	1 00002370
C	0.9451500	-10.2466690	1.8239440
С	2.1904950	-9.9052410	2.6597570
С	-0.3089840	-10.1277310	2.7065670
С	1.0655220	-11.6987370	1.3507420
Н	3.0981430	-9.9813750	2.0518670
Н	2.1380670	-8.8913950	3.0683290
u	2 2797570	-10 6024330	3 5001130
11	1 2107440	10.0024330	2 1222750
H	-1.2107440	-10.3672010	2.1332/50
H	-0.2415090	-10.8249300	3.5489090
Н	-0.4224150	-9.1182650	3.1137510
Н	1.1352690	-12.3589120	2.2210500
Н	0.1924000	-12.0062930	0.7654610
н	1 9625210	-11 8519520	0 7413810
C	-0.9451500	10 2466600	_1 0220110
	-0.9451500	10.2400090	-1.0239440
C	0.3089840	10.12//310	-2./0656/0
С	-2.1904950	9.9052410	-2.6597570
С	-1.0655220	11.6987370	-1.3507420
Н	1.2107440	10.3672010	-2.1332750
Н	0.4224150	9.1182650	-3.1137510
н	0 2415090	10 8249300	-3 5489090
11	2 0091420	0.0012750	2 05105050
H	-3.0981430	9.9813750	-2.0518670
Н	-2.2/9/5/0	10.6024330	-3.5001130
H	-2.1380670	8.8913950	-3.0683290
H	-1.1352690	12.3589120	-2.2210500
Н	-1.9625210	11.8519520	-0.7413810
н	-0 1924000	12 0062930	-0 7654610
C	-0 8076630	9 2870000	3 1835510
	0.0070030	9.2070000	1 0154070
C	-0.6942370	8.1603330	4.2154070
С	0.3629140	10.2611100	3.4000890
С	-2.1362880	10.0257620	3.4187780
Н	-1.5173980	7.4439280	4.1225940
Н	0.2513540	7.6165870	4.1173760
н	-0 7323150	8 5858890	5 2231500
11	0.2096110	11 1165500	2 7107040
H	0.3086110	11.1165500	2./19/840
Н	0.3453230	10.6450720	4.4260090
H	1.3214280	9.7569550	3.2380540
Н	-2.1743110	10.4092950	4.4442930
Н	-2.2538280	10.8742970	2.7378130
н	-2 9861340	9 3508370	3 2723820
 C	0 8076630	-9 2870000	-3 1035510
	0.0070030	2.2070000	J.103JJIU
C	-0.3629140	-10.2611100	-3.4000890
С	0.6942370	-8.1603330	-4.2154070
С	2.1362880	-10.0257620	-3.4187780
Н	-0.3086110	-11.1165500	-2.7197840
н	-1.3214280	-9.7569550	-3.2380540
 ц	-0 3453330	-10 6450700	_1 42000040
п	-0.3433230	-10.0430/20	-4.4260090
Н	1.51/3980	-/.4439280	-4.1225940
Н	0.7323150	-8.5858890	-5.2231500
Н	-0.2513540	-7.6165870	-4.1173760
Н	2.1743110	-10.4092950	-4.4442930

Н	2.9861340	-9.3508370	-3.2723820
Н	2.2538280	-10.8742970	-2.7378130
S	-1.0442930	4.3192120	0.8841710
S	1.0442930	-4.3192120	-0.8841710

TB179 – Excited-State – G= -4115.663740 au

C	-0 6393490	1 6352220	0 2159540
c	1 (700070	1.00022220	0.2100040
C	-1.0/898/0	-0.3695000	0.4121860
С	-0.3172840	-0.6247760	0.0651850
С	0.3172840	0.6247760	-0.0651850
С	0.6393490	-1.6352220	-0.2159540
C	1 6789870	0 3695000	-0 4121860
c	2 012(020	1 10(5000	0.4121000
C	2.8136820	1.1965290	-0.4/50990
С	-2.8136820	-1.1965290	0.4750990
С	-0.4900680	3.0438710	-0.0223220
С	0.2305100	3.5445400	-1.0931960
C	0 2667290	4 9502800	-1 1361240
	0.2007290	4.9502000	1.0050140
н	0.7039110	2.8993770	-1.8258140
С	-0.4135180	5.5378690	-0.0903350
Н	0.7946850	5.5161030	-1.8944070
С	0.4900680	-3.0438710	0.0223220
C	-0 2305100	-3 5445400	1 0931960
c	0.2503100	4 0502800	1 1261240
0	-0.2007290	-4.9502800	1.1301240
Н	-0.7039110	-2.8993770	1.8258140
С	0.4135180	-5.5378690	0.0903350
Н	-0.7946850	-5.5161030	1.8944070
N	1 8017970	-0 9985770	-0 5662860
NT	_1 0017070	0 0005770	0.5662960
IN C	-1.801/9/0	0.9983770	0.3002000
C	2./94/620	2.50/1980	0.0/5/540
Ν	2.8628610	3.5611190	0.5588650
С	-2.7947620	-2.5071980	-0.0757540
N	-2.8628610	-3.5611190	-0.5588650
C	1 0770250	0 7139300	_0 9/50980
	4.0770230	1 5 6 6 5 0 2 0	1 11 00 00
C	5.1898510	1.5665030	-1.1162590
Ν	4.2016980	-0.6034970	-1.2669410
С	6.3634450	1.0662420	-1.6322720
Н	5.1017150	2,6136390	-0.8526370
C	5 3564750	-1 0848700	-1 7876980
c	6 4556040	0.2010220	1 0000220
C	6.4556040	-0.2919320	-1.9900330
Н	5.3510170	-2.1415330	-2.0269520
С	-4.0770250	-0.7139300	0.9450980
С	-5.1898510	-1.5665030	1.1162590
N	-4.2016980	0.6034970	1,2669410
C	-6 3634450	-1 0662420	1 6322720
	-0.3034430	-1.0002420	1.0522720
Н	-5.101/150	-2.6136390	0.85263/0
С	-5.3564750	1.0848700	1.7876980
С	-6.4556040	0.2919320	1.9900330
Н	-5.3510170	2.1415330	2.0269520
B	-3 1170690	1 7138960	0 9512210
D	2 1170600	1 7120060	0.0512210
D	5.11/0890	-1./130960	-0.9512210
Н	-7.3692480	0.6954460	2.4067010
Н	7.3692480	-0.6954460	-2.4067010
С	-7.5644470	-1.9353310	1.8403380
0	-8 6045370	-1 5263860	2 2974350
0	7 2552900	2 1001260	1 4650200
0	-7.3332800	-3.1991360	1.4039200
Н	-8.1737860	-3.7030110	1.6285150
С	7.5644470	1.9353310	-1.8403380
0	8.6045370	1.5263860	-2.2974350
0	7.3552800	3,1991360	-1.4659280
U U	8 1737060	3 7030110	_1 6005200
п	0.1/3/000	J. /USUIIU	-1.0200100
F.	-3.583/280	2.4935680	-0.0849860
F	-2.9401420	2.4582010	2.1039480
F	3.5837280	-2.4935680	0.0849860
F	2.9401420	-2.4582010	-2.1039480
C	0 5769120	-6 9699600	-0 1848740
č	0.0000000	7 4200760	1 4004020
C	U.8∠686/U	-/.4300/60	-1.4884260

С	0.4809060	-7.8908350	0.8594920
С	0.9787370	-8.7867290	-1.7510210
Н	0.8784340	-6.7085770	-2.2973720
C	0 6206570	-9 2642570	0 6295120
	0.2175000	7 5259400	1 0000440
н	0.3175900	-7.5258490	1.8696440
С	0.8688140	-9.6850250	-0.6764940
Н	0.9839160	-10.7447620	-0.8776390
С	-0.5769120	6.9699600	0.1848740
С	-0.4809060	7.8908350	-0.8594920
C	-0 9269670	7 4300760	1 1001260
C a	-0.8288670	7.4300700	1.4004200
C	-0.6206570	9.2642570	-0.6295120
Н	-0.3175900	7.5258490	-1.8696440
С	-0.9787370	8.7867290	1.7510210
Н	-0.8784340	6.7085770	2.2973720
C	-0 8688140	9 6850250	0 6764940
U U	_0 0030160	10 7447620	0 0776300
п	-0.9839100	10.7447020	0.0770390
C	0.5095450	-10.23/5510	1.80/3150
С	1.6018730	-9.9115940	2.8400730
С	-0.8736780	-10.0853040	2.4626510
С	0.6782870	-11.6964370	1.3713090
ч	2 5976910	-10 0123410	2 3958750
11	1 5025560	0.0120110	2.000000
п	1.5025500	-8.8925100	3.2202990
Н	1.5321360	-10.6011850	3.6884650
Η	-1.6695570	-10.3132060	1.7458670
Н	-0.9647300	-10.7751610	3.3087750
Н	-1.0339220	-9.0699210	2.8380770
н	0 5849660	-12 3487810	2 2452620
11	0.0007700	11 0020460	0 6490000
п	-0.0007700	-11.9929460	0.0400090
Н	1.6625370	-11.8/34420	0.9248/30
С	-0.5095450	10.2375510	-1.8073150
С	0.8736780	10.0853040	-2.4626510
С	-1.6018730	9.9115940	-2.8400730
С	-0.6782870	11.6964370	-1.3713090
Н	1.6695570	10.3132060	-1.7458670
н	1.0339220	9.0699210	-2.8380770
ч	0 9647300	10 7751610	-3 3087750
11	2 5076010	10 0122410	2 20507750
п	-2.5970910	10.0123410	-2.3930730
Н	-1.5321360	10.6011850	-3.6884650
Н	-1.5025560	8.8925160	-3.2262990
Н	-0.5849660	12.3487810	-2.2452620
Н	-1.6625370	11.8734420	-0.9248730
Н	0.0887780	11.9929460	-0.6480090
С	-1.2500950	9.3300710	3.1569560
C	-1 3374670	8 2130960	4 2017760
c	-0 1137670	10 2942690	2 5622010
	-0.113/0/0	10.2842890	2 1 5 5 0 2 2 9 1 0
C	-2.5841600	10.0959870	3.1555810
Н	-2.14//940	/.511/6/0	3.9/59560
Н	-0.4005450	7.6502070	4.2705860
Н	-1.5375080	8.6507930	5.1848430
Н	-0.0330040	11.1326410	2.8757530
н	-0 2987420	10 6804210	4 5667880
ц П	0 8476200	9 7600450	3 5710770
11	2 7992590	10 4022700	1 1562470
н	-2.7883580	10.4923700	4.1562470
Н	-2.5670690	10.9383400	2.4572740
Н	-3.4100730	9.4350530	2.8723890
С	1.2500950	-9.3300710	-3.1569560
С	0.1137670	-10.2842690	-3.5622910
С	1.3374670	-8.2130960	-4.2017760
С	2.5841600	-10.0959870	-3.1555810
н	0 0330040	-11 1326410	-2 8757530
и П	_0 0/76000	_Q 76004E0	2.0,0,000
n T	-0.04/0200		-3.3/10//0
н	0.298/420	-10.6804210	-4.566/880
Н	2.1477940	-7.5117670	-3.9759560
Н	1.5375080	-8.6507930	-5.1848430
Н	0.4005450	-7.6502070	-4.2705860
Н	2.7883580	-10.4923700	-4.1562470
Н	3.4100730	-9.4350530	-2.8723890
н	2 5670690	-10 9383400	-2 4572740
* *	2.00,0000		2.10/2/40

S	-1.1343640	4.3445620	0.9391320
S	1.1343640	-4.3445620	-0.9391320

TB202 – Ground-State – G= -4642.127173 au

С	-0.4437950	1.6596040	-0.2540930
С	-1.7645250	-0.1219770	0.2007300
C	0 4025920	0 5720100	0 1410020
C	-0.4023830	-0.3739100	0.1419920
С	0.4025830	0.5739100	-0.1419920
С	0.4437950	-1.6596040	0.2540930
C	1 7645250	0 1219770	-0 2007300
~	1.7043230	0.1219//0	0.2007500
С	2.9614050	0.7826220	-0.4473540
С	-2.9614050	-0.7826220	0.4473540
C	-0 1185010	3 0535870	-0 5698970
~	0.1105010	5.0555070	0.0090970
С	-0.09//380	3.6466160	-1.8018830
С	0.2415710	5.0252530	-1.7354530
ц	-0 3440940	3 1171200	-2 7153030
	0.3440940	5.11/1200	2.7155050
C	0.4/63290	5.4635490	-0.4563480
Н	0.2723150	5.6785520	-2.600030
C	0 1185010	-3 0535870	0 5698970
~	0.1105010	3.0333070	0.00000000
С	0.09//380	-3.6466160	1.8018830
С	-0.2415710	-5.0252530	1.7354530
н	0 3440940	-3 1171200	2 7153030
	0.0110010	5.1171200	2.7100000
C	-0.4/63290	-5.4635490	0.4563480
Н	-0.2723150	-5.6785520	2.6000030
Ν	1,7429580	-1.2406350	0.0337080
NT	1 7420590	1 2406250	0 0227090
IN	-1./429300	1.2400330	-0.0337080
С	2.9991170	2.1819900	-0.6932260
Ν	3.1383380	3.3147520	-0,9068900
C	-2 0001170	_2 1910000	0 6032260
C	-2.9991170	-2.1019900	0.0932200
Ν	-3.1383380	-3.3147520	0.9068900
С	4.2148050	0.0742300	-0.5713920
C	5 2042000	0 7377200	-0 0070160
0	5.5042900	0.7577200	0.9970100
Ν	4.2619350	-1.2539210	-0.3033410
С	6.5599230	0.0357960	-1.1447130
н	5 3444920	1 7981770	-1 2126550
	5.5111520	1.0040040	1.2120990
C	5.419/6/0	-1.9348340	-0.46/6550
С	6.5858330	-1.3380570	-0.8798000
н	5 3689230	-2 9949610	-0 2574820
~	4.0140050	2.3313010	0.5712020
C	-4.2148050	-0.0742300	0.5/13920
С	-5.3842900	-0.7377280	0.9978160
N	-4.2619350	1.2539210	0.3033410
C	6 5500220	0.0257060	1 1447120
C	-6.5599230	-0.0357960	1.144/130
Н	-5.3444920	-1.7981770	1.2126550
С	-5,4197670	1,9348340	0.4676550
C	-6 5050330	1 2200570	0 0700000
0	-0.3030330	1.3380370	0.8798000
Н	-5.3689230	2.9949610	0.2574820
В	-3.0299080	2.0754050	-0.3845130
B	3 0299080	-2 0754050	0 3845130
D 	3.0299000	2.0754050	0.0040100
Н	-/.4954460	1.9129210	0.9960830
Н	7.4954460	-1.9129210	-0.9960830
C	-7 8273200	-0 6985690	1 5932420
~	,.02,9200	0.0909090	1 7054060
0	-8.8685210	-0.104//50	1./354860
0	-7.6723090	-2.0051070	1.8130920
н	-8 5303760	-2 3692260	2 0987030
~	7 0272200	2.3092200	1 6022420
C	1.82/3200	0.6985690	-1.5932420
0	8.8685210	0.1047750	-1.7354860
0	7,6723090	2,0051070	-1.8130920
U U	0 5202760	2 3602260	_2 0007020
п	0.0003/00	2.3092200	-2.098/030
С	-0.8013480	-6.8230690	-0.0010620
С	-0.4895270	-7.2282940	-1.3086050
C	-1 /105/20	-7 7270600	0 0670700
C a	1.1103420	1.1219000	0.00/0/90
C	-0.//95000	-8.5151680	-1.7488860
Н	0.0074540	-6.5228120	-1.9668120
C	-1 6962220	-9 0385370	0 4646250
	1 6770520	2.0000070	1 0070250
н	-1.0//8530	-/.39/4050	1.86/2350
С	-1.3732980	-9.4070620	-0.8409960

Н	-1.5868280	-10.4171740	-1.1738850
С	0.8013480	6.8230690	0.0010620
С	1.4105420	7.7279680	-0.8670790
С	0.4895270	7.2282940	1.3086050
С	1.6962220	9.0385370	-0.4646250
Н	1.6778530	7.3974050	-1.8672350
С	0.7795000	8.5151680	1.7488860
Н	-0.0074540	6.5228120	1.9668120
С	1.3732980	9.4070620	0.8409960
Н	1,5868280	10.4171740	1,1738850
С	-2.3563760	-10.0005950	1.4576200
C	-1 4553070	-10 1509470	2 6951500
C	-3 7195320	-9 4316640	1 8866110
C	-2 5929150	_11 3010800	0 0557020
	-2.3020130	10 5550390	0.0007000
H	-0.4//0100	-10.5558/30	2.4153810
Н	-1.2956660	-9.1920380	3.19//5/0
H	-1.91/8350	-10.8354570	3.414/560
Н	-4.3804430	-9.3154/30	1.02121/0
Н	-4.2014600	-10.1103630	2.5990170
Н	-3.6160380	-8.4550990	2.3694100
Н	-3.0491840	-12.0389570	1.6047090
Н	-3.2476480	-11.3515430	-0.0136750
Н	-1.6399680	-11.8567100	0.5494970
С	2.3563760	10.0005950	-1.4576200
С	3.7195320	9.4316640	-1.8866110
С	1.4553070	10.1509470	-2.6951500
С	2.5828150	11.3910890	-0.8557030
Н	4.3804430	9.3154730	-1.0212170
Н	3.6160380	8,4550990	-2.3694100
н	4 2014600	10 1103630	-2 5990170
н	0 4770100	10 5558730	-2 4153810
и П	1 9178350	10 8354570	-3 4147560
и П	1 2956660	9 1920380	-3 1977570
и П	3 0491840	12 0389570	-1 6047090
11	1 6200690	11 9567100	1.004/090
п	1.0399000	11 2515420	-0.5494970
н	3.2476480	11.3515430	0.0136/50
C	0.4505810	8.9906160	3.16/3650
C	-0.0927680	7.8581430	4.0454450
С	1./214690	9.5421610	3.8359210
С	-0.6094310	10.1023130	3.0903830
Н	-1.0302880	7.4505040	3.6526840
Н	0.6278710	7.0378890	4.1328910
Н	-0.2921530	8.2414910	5.0511920
Н	2.1334120	10.3957490	3.2895580
Н	1.4920010	9.8760040	4.8537810
Н	2.4951200	8.7693220	3.8942790
Н	-0.8541520	10.4611060	4.0963270
Н	-0.2535130	10.9550800	2.5034620
Н	-1.5281560	9.7286840	2.6250830
С	-0.4505810	-8.9906160	-3.1673650
С	-1.7214690	-9.5421610	-3.8359210
C	0.0927680	-7.8581430	-4.0454450
C	0 6094310	-10 1023130	-3 0903830
ч	-2 1334120	-10 3957490	-3 2895580
и П	-2 4951200	-8 7693220	-3 8942790
и П	_1 4920010	-9 9760040	_/ 0527010
п	-1.4920010	-9.8780040	-4.033/010
H	1.0302880	-7.4505040	-3.0520840
H	0.2921530	-8.2414910	-5.0511920
H	-0.62/8/10	-/.03/8890	-4.1328910
H	0.8541520	-10.4611060	-4.0963270
Н	1.5281560	-9.7286840	-2.6250830
Н	0.2535130	-10.9550800	-2.5034620
S	0.2988860	4.1699830	0.6804080
S	-0.2988860	-4.1699830	-0.6804080
С	-2.9952900	3.5344340	0.3131940
С	-2.9263410	4.7325660	-0.4071150
С	-3.0055050	3.6291880	1.7149700
С	-2.8599980	5.9691060	0.2348940

Н	-2.8946180	4.7003860	-1.4930780
С	-2.9494350	4.8571160	2.3691110
Н	-3.0541310	2.7175020	2.3101600
С	-2.8768340	6.0355950	1.6255190
Н	-2.7891170	6.8809360	-0.3519820
Н	-2.9598310	4.8979720	3.4549460
Н	-2.8367730	6.9997940	2.1255540
С	2.9952900	-3.5344340	-0.3131940
С	3.0055050	-3.6291880	-1.7149700
С	2.9263410	-4.7325660	0.4071150
С	2.9494350	-4.8571160	-2.3691110
Н	3.0541310	-2.7175020	-2.3101600
С	2.8599980	-5.9691060	-0.2348940
Н	2.8946180	-4.7003860	1.4930780
С	2.8768340	-6.0355950	-1.6255190
Н	2.9598310	-4.8979720	-3.4549460
Н	2.7891170	-6.8809360	0.3519820
Н	2.8367730	-6.9997940	-2.1255540
С	-3.2893620	2.0236290	-1.9857730
С	-2.5241630	1.2141190	-2.8381270
С	-4.3294710	2.7573650	-2.5802990
С	-2.7709190	1.1452910	-4.2099930
Н	-1.7067320	0.6201260	-2.4329230
С	-4.5894050	2.6963840	-3.9471520
Н	-4.9495090	3.4077250	-1.9659670
С	-3.8064770	1.8878090	-4.7701740
Н	-2.1545330	0.5090270	-4.8386050
Н	-5.3995420	3.2826780	-4.3711850
Н	-4.0029860	1.8381980	-5.8369660
С	3.2893620	-2.0236290	1.9857730
С	4.3294710	-2.7573650	2.5802990
С	2.5241630	-1.2141190	2.8381270
С	4.5894050	-2.6963840	3.9471520
Н	4.9495090	-3.4077250	1.9659670
С	2.7709190	-1.1452910	4.2099930
Н	1.7067320	-0.6201260	2.4329230
С	3.8064770	-1.8878090	4.7701740
Н	5.3995420	-3.2826780	4.3711850
Н	2.1545330	-0.5090270	4.8386050
Н	4.0029860	-1.8381980	5.8369660

TB202 – Excited-State – G=- -4642.069955 au

С	-0.4692870	1.6688630	-0.3036820
С	-1.7555200	-0.1237180	0.1671150
С	-0.3965730	-0.5675360	0.1413250
С	0.3965730	0.5675360	-0.1413250
С	0.4692870	-1.6688630	0.3036820
С	1.7555200	0.1237180	-0.1671150
С	2.9603490	0.7865220	-0.4433930
С	-2.9603490	-0.7865220	0.4433930
С	-0.1468740	3.0586540	-0.6253150
С	-0.1637150	3.6735170	-1.8475800
С	0.1899100	5.0479620	-1.7738960
Н	-0.4453300	3.1599380	-2.7599330
С	0.4706060	5.4671730	-0.4974380
Н	0.1942280	5.7140990	-2.6292900
С	0.1468740	-3.0586540	0.6253150
С	0.1637150	-3.6735170	1.8475800
С	-0.1899100	-5.0479620	1.7738960
Н	0.4453300	-3.1599380	2.7599330
С	-0.4706060	-5.4671730	0.4974380
Н	-0.1942280	-5.7140990	2.6292900
N	1.7466570	-1.2325630	0.1058540
Ν	-1.7466570	1.2325630	-0.1058540
С	2.9734080	2.1700430	-0.7707930
Ν	3.0789970	3.2897140	-1.0601670

С	-2.9734080	-2.1700430	0.7707930
Ν	-3.0789970	-3.2897140	1.0601670
C	1 2173630	0 1022300	-0 5107460
~	4.2173030	0.1022300	0.010/400
C	5.3977320	0.///9/20	-0.8943670
N	4.2678330	-1.2329160	-0.2305160
С	6.5846430	0.0906380	-1.0011760
U U	5 3549540	1 0 2 0 6 2 0 0	_1 1002110
п	5.3349340	1.0300200	-1.1092110
С	5.4399860	-1.8971930	-0.3607460
С	6.6115040	-1.2885950	-0.7371490
н	5 3960820	-2 9589470	-0 1551330
 	01706020	2.3303470	0.1331330
C	-4.21/3630	-0.1022300	0.510/460
С	-5.3977320	-0.7779720	0.8943670
N	-4 2678330	1 2329160	0 2305160
0	C E04C420	0.0006300	1 0011700
C	-6.5846430	-0.0906380	1.0011/60
Н	-5.3549540	-1.8386280	1.1092110
С	-5.4399860	1.8971930	0.3607460
C	-6 6115040	1 2885950	0 7371/90
0	-0.0113040	1.2003930	0.7371490
Н	-5.3960820	2.9589470	0.1551330
В	-3.0439140	2.0671740	-0.4283410
B	3 0439140	-2 0671740	0 4283410
	7 5205200	1 05(2220	0.1200110
н	-7.5285200	1.8562330	0.8289910
Н	7.5285200	-1.8562330	-0.8289910
С	-7.8564000	-0.7664700	1,4027460
0	-9 0004020	-0 1950060	1 51100/0
0	-8.9094920	-0.1850000	1.5118940
0	-7.6975010	-2.0737520	1.6239770
Н	-8.5621310	-2.4444690	1.8792360
C	7 8564000	0 7664700	-1 4027460
~	,.0001000	0.1050060	1 5110040
0	8.9094920	0.1850060	-1.5118940
0	7.6975010	2.0737520	-1.6239770
н	8 5621310	2 4444690	-1 8792360
C	0 0007700	6 0215560	0 0244950
C	-0.8087700	-0.0213360	0.0344630
С	-0.5245770	-7.2152060	-1.2828530
С	-1.3992260	-7.7341600	0.9075240
C	-0 8228890	-8 4985560	-1 7278600
	0.0220090	6.5005400	1.0440000
Н	-0.0416600	-6.5035420	-1.9448390
С	-1.6931520	-9.0412860	0.4997980
Н	-1,6446830	-7,4121990	1,9160890
C	_1 2072120	_0 3095120	_0 0153510
0	-1.3972130	-9.5965120	-0.8153510
Н	-1.6166220	-10.4060750	-1.1520750
С	0.8087700	6.8215560	-0.0344850
C	1 3992260	7 7341600	-0 9075240
c	1.3332200	7.015000	1 2020520
C	0.5245770	1.2152060	1.2828530
С	1.6931520	9.0412860	-0.4997980
Н	1.6446830	7.4121990	-1.9160890
C	0 8228890	8 1985560	1 7278600
	0.0220090	0.4905500	1.7270000
Н	0.0416600	6.5035420	1.9448390
С	1.3972130	9.3985120	0.8153510
Н	1,6166220	10,4060750	1,1520750
C	-2 3320690	-10 0122410	1 /090100
C	-2.3320080	-10.0122410	1.4980190
С	-1.4051520	-10.1731000	2.7149620
С	-3.6859750	-9.4475490	1.9605850
C	-2 5708970	-11 3975110	0 8888910
	0.4220040	10 5755400	2 4111000
н	-0.4330040	-10.5/55400	2.4111980
Н	-1.2348640	-9.2185170	3.2222750
Н	-1.8524880	-10.8637840	3.4382650
ц	-1 3619860	-9 3239920	1 1103510
11	4.1505100	9.5259920	1.1103310
Н	-4.1527130	-10.1326350	2.6/69810
Н	-3.5724600	-8.4752210	2.4496530
н	-3 0214030	-12 0520210	1 6418200
11	2 050254030	11 250520210	1.0410200
н	-3.253/680	-11.3202930	0.0339/80
Н	-1.6346040	-11.8601550	0.5589910
С	2.3320680	10.0122410	-1.4980190
C	3 6050750	9 1175100	_1 0605050
~	5.0059/50	2.44/J490	T. 2003030
С	1.4051520	10.1731000	-2.7149620
С	2.5708970	11.3975110	-0.8888910
Н	4.3649860	9.3239920	-1.1103510
u	3 5721600	Q 1750010	-2 4406520
11	3.3/24000	0.4/JZZIU	-2.4490330
Н	4.152/130	10.1326350	-2.6/69810

Н	0.4330040	10.5755400	-2.4111980
Н	1.8524880	10.8637840	-3.4382650
ч	1 2348640	9 2185170	-3 2222750
11	2 0014020	10 0500010	1 6410000
Н	3.0214030	12.0520210	-1.6418200
Н	1.6346040	11.8601550	-0.5589910
Н	3,2537680	11.3505930	-0.0339780
C	0 5208150	8 9623690	3 1561200
~	0.5200150	0.9023090	5.1501200
C	0.0042420	/.82028/0	4.03/8/50
С	1.8009600	9.5192670	3.8021300
C	-0 5489510	10 0663370	3 1078840
11	0 0202090	7 4006000	2 6622520
п	-0.9393080	7.4098000	3.0033330
H	0.7317340	7.0040210	4.1031350
Н	-0.1749460	8.1952200	5.0505720
ч	2 1948410	10 3801820	3 2539990
11	2.1940410	10.3001020	5.2559990
Н	1.5899670	9.8438/10	4.8269430
Н	2.5817230	8.7522660	3.8388710
н	-0.7757090	10.4172890	4,1207940
11	0.0114510	10,0251220	2 5100270
п	-0.2114510	10.9251520	2.3100370
Н	-1.4740920	9.6881640	2.6591930
С	-0.5208150	-8.9623690	-3.1561200
C	-1 8009600	-9 5192670	-3 8021300
~	1.0009000	9.5192070	5.0021500
C	-0.0042420	-/.82028/0	-4.03/8/50
С	0.5489510	-10.0663370	-3.1078840
н	-2 1948410	-10 3801820	-3 2539990
	2.1910110	0.75002020	2.000710
Н	-2.581/230	-8./522660	-3.8388/10
Н	-1.5899670	-9.8438710	-4.8269430
Н	0,9393080	-7,4096000	-3,6633530
ц	0 1740460	-9 1952200	-5 0505720
п	0.1/49400	-0.1952200	-5.0505720
H	-0.7317340	-7.0040210	-4.1031350
Н	0.7757090	-10.4172890	-4.1207940
н	1 4740920	-9 6881640	-2 6591930
11	0.0114510	10 0051000	2.0001000
Н	0.2114510	-10.9251320	-2.5188370
S	0.3242290	4.1585400	0.6259380
S	-0.3242290	-4.1585400	-0.6259380
C	-3 0030590	2 507/150	0 3006400
C	-3.0039380	5.5074150	0.3098400
С	-2.9308830	4.7276440	-0.3723400
С	-3.0094080	3.5568660	1.7135690
C	-2 8554190	5 9423050	0 3088660
	2.0001190	4 7207020	1 4506410
Н	-2.9008820	4./30/230	-1.4586410
С	-2.9418700	4.7628050	2.4066310
Н	-3.0630280	2,6267530	2,2790720
C	-2 9649920	5 9640920	1 7011200
	-2.8048920	5.9040020	1.7011200
Н	-2.7821000	6.8720810	-0.2488820
Н	-2.9474690	4.7685510	3.4931910
н	-2 8170020	6 9113400	2 2318690
	2.0170020	0.9119100	2.2310090
C	3.0039580	-3.50/4150	-0.3096400
С	3.0094080	-3.5568660	-1.7135690
С	2.9308830	-4.7276440	0.3723400
C	2 9/18700	-1 7628050	-2 4066310
	2.9410700	4.7020050	2.4000310
Н	3.0630280	-2.626/530	-2.2/90/20
С	2.8554190	-5.9423050	-0.3088660
н	2 9008820	-4 7307230	1 4586410
0	2.9000020	F 0C40820	1 7011200
C	2.8648920	-5.9640820	-1./011200
Н	2.9474690	-4.7685510	-3.4931910
Н	2,7821000	-6.8720810	0.2488820
ц	2 8170020	-6 9113400	-2 2318690
	2.01/0020	0.9113400	2.2310090
C	-3.2918440	2.0535780	-2.0346580
С	-2.5517240	1.2279440	-2.8940480
С	-4.3053300	2 8282730	-2 6221360
č	2.7055000	1 1040050	4 007000
C	-2.190080	1.1849950	-4.20/0600
Н	-1.7567590	0.6015940	-2.4928760
С	-4.5610990	2.7934940	-3.9911420
ч	-4 9066120	3 4007280	-2 0025820
	JUUUIZU	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.0023020
C	-3.8029600	T.9098,80	-4.8217250
Н	-2.1986910	0.5360060	-4.9014720
Н	-5,3492430	3,4125430	-4,4100250
 U	-3 0065740	1 0406000	_ = 0007700
п	-3.9903/40	1.9400900	-3.009//80
C	3.2918440	-2.0535780	2.0346580

С	4.3053300	-2.8282730	2.6221360
С	2.5517240	-1.2279440	2.8940480
С	4.5610990	-2.7934940	3.9911420
Н	4.9066120	-3.4907280	2.0025820
С	2.7955880	-1.1849950	4.2670600
Н	1.7567590	-0.6015940	2.4928760
С	3.8029600	-1.9698780	4.8217250
Н	5.3492430	-3.4125430	4.4100250
Н	2.1986910	-0.5360060	4.9014720
Н	3.9965740	-1.9406960	5.8897780

5. Steady-state and Time-resolved Spectroscopies

5.1-Transient absorption spectra of TB202 in solution

Figure S4. Transient absorption spectra of **TB202** solution. Excited state absorption (ESA) can be found between 480 and 760 nm and 740 and 1000 nm. Simulated emission (SE) can be identified between 820 nm and 940 nm respectively partially overlapping with the Ground state bleach (GSB) at 795 nm. As there is no ET or CT in the dye solution the excited state decays without the formation of photoproducts.

5.2-Global analysis

Global analysis of the transient absorption data was performed under the assumption that the decay times are not dependent on the wavelength. Under this assumption the data was fitted by a 2D function $G(\lambda,t)$. In the time dimension $G(\lambda,t)$ is the product of a Heaviside step function and a multi-exponential decay convolved with the Gaussian response function, which is the result of the finite time resolution of the measurement. The fitting function can be expressed by the following way after analytically calculating the convolution:

$$G(\lambda, t) = \frac{A_{\sigma}(\lambda)k_{\sigma}}{\sqrt{2\pi}}e^{-\frac{(k_{\sigma}(t-t_0))^2}{2}} + \sum_{s}\frac{A_{s}(\lambda)}{2}e^{\left(\frac{k_s}{\sqrt{2}k_{\sigma}}\right)^2}e^{-k_s(t-t_0)} \cdot \left(1 + erf\left(\frac{k_{\sigma}\left(t-t_0-\frac{k_s}{k_{\sigma}^2}\right)}{\sqrt{2}}\right)\right).$$

Here t_0 is the time zero; k_s is the decay rate of the sth component in the multiexponential decay series, k_σ is the inverse of the resolution time and erf is the error function. Fitting was performed with VARPRO algorithm [X4, X5] and the free parameters for the fitting were t_0 , k_s , and k_σ and the $A_s(\lambda)$ and $A_\sigma(\lambda)$ functions. After the global fitting is performed the resulting $A_s(\lambda)$ functions are the decay-associated difference spectra and $\tau_s=1/k_s$ are the corresponding decay lifetimes are shown on Fig. SI2. The comparison of the fitting function with the data is displayed on Fig. SI3 for the Al₂O₃ and TiO₂ cell.

Figure S5. The DADS resulting from the global analysis of the TA data measured for AI_2O_3 cell (A) and TiO_2 cell (B).

Figure S6. Comparison of global fitting function compared to the raw datasets are displayed at three selected wavelengths 680 nm, 825 nm and 910 nm for the Al_2O_3 cell (A) and the TiO₂ cell (B). The reduced χ^2 value of the fitting was 1.3E-07 in both cases. The four decay times and the non-decaying component were enough to acquire a good accuracy fit for both the short- and the long-term kinetics.

Table S2. Results of single wavelength fits (sum of four exponentials plus "infinity" component) for the stim. emission at 825 nm (figure **S7**) monitoring the excited state decay in **TB202**/Al₂O₃ as a function of the CDCA concentration. The general trend of a slower energy transfer, characterised by the lifetimes t_2 and t_3 is qualitatively obvious from fig. **S7** and consistently reproduced by the fits. Increasing the CDCA concentration from 5 to 10mM (1:50 vs. 1:100) has a minor effect on the ET times. Note that the fit values are not exactly the same as for the global fit (CDCA concentration 10 mM), since the fits are performed on a single wavelength here.

	λ (nm)	τ ₂ [ps]	Amplitude	τ ₃ [ps]	Amplitude
Dye:CDCA 1:0	825	1.6±0.07	70 %	16.0±1.1	30%
Dye:CDCA 1:10	825	2.2±0.1	51 %	17.0±0.8	49 %
Dye:CDCA 1:50	825	9.7±0.6	46 %	110.0±11	54 %
Dye:CDCA 1:100	825	13±1	52 %	150±4.3	48 %

Figure S7. Decay kinetics of the stim. emission at 825 nm for **TB202**/Al₂O₃ as a function of the CDCA concentration. Y-axis is in log. scale.

6. Photovoltaic Cells

Fabrication of Solar Cells

The mesoporous TiO₂ electrodes are prepared as previously described yielding 8 μ m thick transparent electrode.^[4] For the device performance it was sheltered with a 5 µm thick 400 nm-based TiO2 scattering layer. The fluorine-doped SnO₂ (FTO) conducting glass (NSG-10, Nippon Sheet Glass) was thoroughly cleaned with a detergent solution, acetone, and ethanol solvents. Then the substrates were treated with 40 mM TiCl₄ aqueous solution at 70 °C for 45 min in order to make a thin and compact TiO_2 underlayer. The colloidal TiO_2 paste of Dyenamo DNEP03 was used. The layers were sequentially deposited on the TiCl₄ -treated FTO glass via screen printing technology, which results in a different thickness of TiO₂. The printed TiO₂ was sintered at 500 °C under dry air flow and cooled down to room temperature to obtain a mesoporous, electronic conductive film. The mesoporous TiO₂ film was treated in TiCl₄ (40 mmol/L) and kept at 70 °C in an oven for 30 min. After sintering at 500 °C in air and cooled down to 80 $^{\circ}$ C, the mesoporous TiO₂ electrodes were stained by immersing them into the dye solution at room temperature 12 h. The dye solution is composed of TB202 or TB179 (100 µmol/L) and CDCA (50 mmol/L) in CHCl₃/EtOH (1:9, v/v). The dye-coated TiO₂ film working electrode and thermally low-concentrated platinized conducting glass counter electrode were assembled using a 25 µm thick Surlyn hot-melt ring (DuPont, USA) heated at 125 °C. The internal space was filled with electrolyte using a vacuum pump through a predrilled hole on the counter electrode. The hole was sealed with a Bynel sheet and a thin glass cover by heating. All PCE values have been reproduced. The reproducibility over cells is in the range of 0.1% in power conversion efficiencies.

Figure S8. Evolution of J-V curves as a function of the dyes with no de-aggregating agent in the sensitizing solution.

Table S2. Photovoltaic parameters of the different PPcy (**TB144** and **TB207**) and thienyl-PPcy (**TB179** and **TB202**) dyes with no de-aggregating agent in the sensitizing solution.

Dye	J _{sc} (mA/cm²)	V _{oc} (mV)	FF	PCE (%)
TB144	2.1	307	0.63	0.4
TB207	15.6	348	0.57	3.1
TB179	1.8	276	0.65	0.3
TB202	4.9	248	0.55	0.7

AVT is defined as the weight of the integration of the transmission spectrum of the PV device against the photopic response of the Human eye. AVT is calculated from the following equation:

$$AVT = \frac{\int T(\lambda)V(\lambda)S(\lambda)d(\lambda)}{\int V(\lambda)S(\lambda)d(\lambda)}$$
eq. 1

Where T is the transmission, V is the photopic response and S is the solar photon flux at A.M.1.5G condition.

In addition, CRI value has been calculated from the following equation:

$$CRI = \frac{1}{8} \sum_{i=1}^{8} [100 - 4.6 \sqrt{(\Delta u_i^*)^2 + (\Delta v_i^*)^2 + (\Delta W_i^*)^2}]$$

7. NMR and HRMS Spectra

Figure S10. ¹H NMR of compound 5 recorded in CDCl₃.

Figure S11. ¹³C NMR of compound 5 recorded in CDCl₃.

Figure S12. ¹H NMR of compound 6 recorded in CDCl₃.

Figure 8. ¹H NMR of compound 7 recorded in CDCl₃.

Figure S9. ¹H NMR of compound TB202 recorded in CDCl₃/CD₃OD : 9/1.

Figure S16. *MALDI-TOF spectrum of compound* **3***. Entire experimental spectrum (up) and superimposition of the simulated and experimental molecular fragment (down).*

Figure S17. *MALDI-TOF spectrum of compound* **5***. Entire experimental spectrum (up) and superimposition of the simulated and experimental molecular fragment (down).*

B174 (DCM) - MeOH (100%)

Figure S18. *MALDI-TOF spectrum of compound* **6***. Entire experimental spectrum (up) and superimposition of the simulated and experimental molecular fragment (down).*

Figure S19. *MALDI-TOF spectrum of compound* **7***. Entire experimental spectrum (up) and superimposition of the simulated and experimental molecular fragment (down).*

Figure S20. MALDI-TOF spectrum of compound **TB179**. Entire experimental spectrum (up) and superimposition of the simulated and experimental molecular fragment (down).

Figure S21. MALDI-TOF spectrum of compound **TB202**. Entire experimental spectrum (up) and superimposition of the simulated and experimental molecular fragment (down).

10. References

- [1] K. Yang, T. He, X. Chen, S. Z. D. Cheng, Y. Zhu, *Macromolecules* 2014, 47, 8479–8486.
- [2] J. Ranta, T. Kumpulainen, H. Lemmetyinen, A. Efimov, J. Org. Chem. 2010, 75, 5178–5194.
- [3] T. Baron, W. Naim, I. Nikolinakos, B. Andrin, Y. Pellegrin, D. Jacquemin, S. Haacke, F. Sauvage, F. Odobel, *Angew. Chem. Int. Ed.* **2022**, *61*, e202207459.
- [4] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, *Thin Solid Films* **2008**, *516*, 4613–4619.
- [4] J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999-3094.
- [5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16 Rev. B.01*, Wallingford, CT, 2016.
- [6] Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, **2008**, *120*, 215-241.
- [7] D. Jacquemin, A. Planchat, C. Adamo and B. Mennucci, *J. Chem. Theory Comput.*, **2012**, *8*, 2359–2372.
- [8] C.A. Guido, A. Chrayteh, G. Sclamani, B. Mennucci, D. Jacquemin, *J. Chem. Theory Comput.*, **2021**, *17*, 5155–5164.