Supporting Information

Design of Array Structure for Carbon-based Field-Effect-Transistor Type Gas Sensor to Accurately Identify Trace Gas Species

Qiao-qiao Zou¹, Bin-Liu¹, Yong Zhang*

¹ Qiao-qiao Zou and Bin-Liu contributed equally to this work
Q. Q. Zou, B. Liu, Y. Zhang*
School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, PR China.

Y. Zhang*

Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, PR China.

Y. Zhang* e-mail: zhangyong@xtu.edu.cn

^{*} Corresponding author. Tel: +86-0731-58293332.

E-mail address: zhangyong@xtu.edu.cn (Y. Zhang).

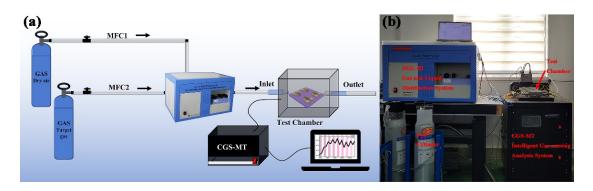


Fig. S1 (a) Schematic diagram of the gas sensing test system. (b) Digital photo of the gas sensing

test

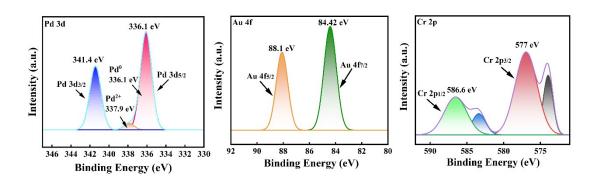


Fig. S2 The high-resolution XPS spectra of (f)Pd 3d, (g)Au 4f and(h) Cr 2p, respectively.

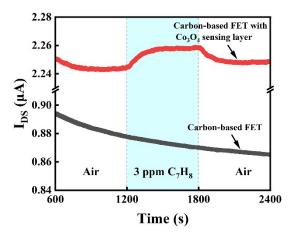


Fig. S3 Response/recovery curves of the carbon-based FET with and without Co_3O_4 sensing layer at 3 ppm C_7H_8 , respectively.

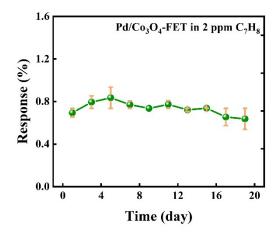


Fig. S4 Response values of the Pd/Co $_3O_4$ -FET at 2 ppm C_7H_8 for up to 20 days.

Sensing material	Sensor type	Operating temperature	Gas concentration	Advantages	Referenc e
Pd-Loaded SnO ₂	Resistive	350°C	1 ppm	High selectivity for p- methylbenzene	[1]
Co ₃ O ₄ , Pd- Loaded Co ₃ O ₄	Resistive	250-350°C	5 ppm	Highly selective, sensitive, and reliable manner	[2]
Cr ₂ O ₃	Resistive	170°C	l ppm	Simple preparation	[3]
Pd-loaded quintuple- shelled Co ₃ O ₄	Resistive	250°C	0.25-5 ppm	Ultrahigh response, ultrahigh selectivity	[4]
NiO/NiMoO4	Resistive	325-425°C	0.25 ppm	High selectivity and response	[5]
Pd/Co ₃ O ₄	Floating- gate FET	Room temperature	80 ppb	Low power consumption, low detection limit, integrability, mass preparation	

Table S1 Comparison of the key features of the Pd/Co₃O₄-FET and various previously reported toluene gas sensors.

Table S2 Comparison of response values (%) of the four gas sensing units to five gases at 3ppm

	Gas sensing unit				
	Co ₃ O ₄ -FET	Pd/Co ₃ O ₄ -FET	Au/Co ₃ O ₄ -FET	Cr/Co ₃ O ₄ -FET	
Response value	$R_{C^6H^6} > R_{HCHO}$	$R_{C_6H_6} > R_{HCHO} >$	$R_{NO^2} > R_{HCHO} >$	$R_{HCHO} > R_{C^{7}H^{8}} >$	
ordering	$> R_{NH^3} > R_{NO^2} >$	$R_{NH^3} > R_{C^7H^8} >$	$R_{C^{7}H^{8}} > R_{NH^{3}} >$	$R_{C^6H^6} > R_{NH^3} >$	
	$R_{C^7H^8}$	R _{NO2}	$R_{C_6H_6}$	R _{NO2}	

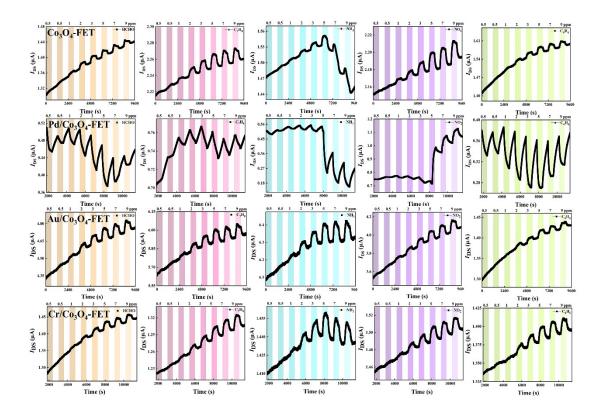


Fig. S5 Dynamic response/recovery curves of Co_3O_4 -FET, Pd/ Co_3O_4 -FET, Pd/ Co_3O_4 -FET and Cr/ Co_3O_4 -FET to HCHO, C_7H_8 , NH₃, NO₂ and C_6H_6 at the range of 0.5-9 ppm, respectively.

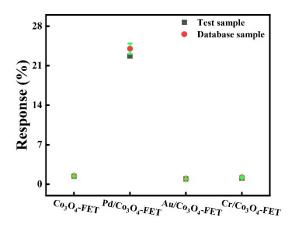


Fig. S6 Comparison of the response values of the carbon-based FET gas sensor array to the test sample and the database sample.