ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Interfacial adsorption study of Nitrogen based inhibitors in silane nanocontainers as anticorrosive and self-healing material for steel in strong acid solution.

M.S. Darris*^a S.M.A. Shibli^{a,b}

Supplementary Information's

*Corresponding author: E-mail address: <u>darrisms@gmail.com</u> (Darris M.S.)

^{a.}Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695 581, India

^bCentre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695 581, India

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Fig. S1 Elemental mapping for rGO

Fig. S2 Elemental mapping for GOS $% \left({{{\mathbf{F}}_{\mathbf{F}}} \right)$

Fig. S3 FESEM images of (a,b) rGO (c,d) GOS (e,f) GSBIM

Fig. S4: XPS spectra of mild steel after 72 hours immersion on 20% H₂SO₄ and GSBIM dispersed acid solution.

Journal Name

Fig.S6: Error bars indicated for the repeated measurement of Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic polarization (PDP)

Fig.S7: 2D and 3D AFM images of (a&b) mild steel in acid solution (c&d) mild steel in GOSB dispersed acid solution.

Fig.S8: Scratch test for self-healing

Fig.S9: Arrhenius plot and Transition state diagram for mild steel immersed in 20% H2SO4 acid solution.

Sample	BET Surface area (m²/g)	BJH pore volume (cc/g)	BJH average pore diameter (nm)	
rGO	16.436	0.018	1.984	
GOS	22.873	0.034	1.476	
GSBIM	5.709	0.008	1.485	

 Table S1: BET analysis for rGO, GOS and GOSB

SI.No.	Inhibitor	Substrate	Medium	Efficiency	Reference
1.	tetrahydroacridines	Steel	15%HCl	97.87%	1
2.	1,12-bis((1H-benzimidazol-2-thioyl)dodecane	Steel	1M HCl	97%	2
3.	N,S dopped Carbon dot	Steel	15%HCl	98.64%	3
4.	(N-(quinolin-8-yl) quinoline-2-carboxamide)	Steel	1M HCl	94.34%	4
5.	<u>choline</u> formate Ionic liquid	Steel	5%HCl	96.9%	5
6.	diaminodecane functionalized graphene oxide	Steel	15%HCl	84%	6
7.	1-[3-(3-methoxyphenyl)-5-(quinoxalin-6-yl)-4,5-	Steel	1M HCl	93.69%	7
	dihydropyrazol-1-yl]propan-1-one				
8.	Naphthalen-2-yl Naphthalene-2-Carboxammide	Steel	1M HCl	98.5%	8
9.	Dextran+KI	Steel	15% H ₂ SO ₄	99.4%	9
10.	chalcone oxime functionalized graphene oxide	Steel	HCI	94%	10
11.	2-(2-hydroxyphenyl)-benzothiazole	Steel	3.38M HCl	90.17%	11
12.	2,3-diphenyl-1,8-naphthyridine carboxyethylthiosuccinic	Steel	1M HCl	96.95%	12
13.	Benzimidazole encapsulated silane nano container	steel	20% H ₂ SO ₄	99.53%	Present
	(GSBIM)				inhibitor
					system

Table. S2: Comparison table of inhibitors in acid medium and their efficiency

References

- 1 W. Zhang, H. J. Li, M. Wang, L. J. Wang, Q. Pan, X. Ji, Y. Qin and Y. C. Wu, J. Mol. Liq., 2019, 293, 111478.
- 2 M. Chafiq, A. Chaouiki, M. Damej, H. Lgaz, R. Salghi, I. H. Ali, M. Benmessaoud, S. Masroor and I. M. Chung, J. Mol. Liq., 2020, **309**, 113070.
- 3 V. Saraswat and M. Yadav, *Colloids Surfaces A Physicochem. Eng. Asp.*, 2021, **627**, 127172.
- 4 R. Sadeghi Erami, M. Amirnasr, S. Meghdadi, M. Talebian, H. Farrokhpour and K. Raeissi, *Corros. Sci.*, 2019, **151**, 190–197.
- 5 M. Mobin, R. Aslam, R. Salim and S. Kaya, J. Colloid Interface Sci., 2022, 620, 293–312.
- 6 T. A. Saleh, K. Haruna and B. Alharbi, J. Colloid Interface Sci., 2023, 630, 591–610.

Journal Name

- 7 L. O. Olasunkanmi and E. E. Ebenso, J. Colloid Interface Sci., 2020, 561, 104–116.
- 8 P. Kannan, T. S. Rao and N. Rajendran, J. Colloid Interface Sci., 2018, **512**, 618–628.
- 9 M. M. Solomon, S. A. Umoren, I. B. Obot, A. A. Sorour and H. Gerengi, ACS Appl. Mater. Interfaces, 2018, **10**, 28112–28129.
- 10 A. Thoume, D. Benmessaoud Left, A. Elmakssoudi, R. Achagar, M. Dakir, M. Azzi and M. Zertoubi, *Langmuir*, 2022, **38**, 7472–7483.
- 11 M. Afzalkhah, S. Masoum, M. Behpour, H. Naeimi and A. Reisi-Vanani, *Ind. & amp; Eng. Chem. Res.*, 2017, **56**, 9035–9044.
- 12 Y. San, J. Sun, H. Wang, Z.-H. Jin and H.-J. Gao, *ACS Omega*, 2021, **6**, 28063–28071.