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Table S1 The key hyperparameters for each algorithm in our ML models applied for grid search 
(hyperparameters not mentioned were kept at their default values).

Algorithms Hyperparameters

Support Vector Regression C = [0.1, 0.2, 0.3, 1, 2, 3, 10, 20]
gamma = [1, 0.1, 0.01, 0.001]

Random Forest Regression n_estimators = [5, 10, 20, 50, 70, 100]
max_depth = [5, 6, 7, 9, 10, 20]
max_features = [0.6, 0.7, 1]

XGBoost Regression n_estimators = [5, 10, 20, 50, 70, 100, 200]
max_depth = [5, 6, 7, 8]
max_delta_step = [1, 3, 5, 7]

Artificial Neural Network -

Table S2 Summary of feature names and corresponding abbreviations.

Atomic features Structure features

Atomic number (N) The number of carbon atoms on doping sites 
(Nc)

Atomic mass (M) The number of boron atoms on doping sites 
(Nb)

Atomic radius (r) Doping position (p1-6)

Electronegativity () The bonding length of boron and metal (B-M)

Electron affinity (EA) The bonding length of carbon and metal (C-M)

First ionization energy (EI) The bonding length of metal 1 and metal 2 
(M1-M2)

The number of d-electron (d) The bonding length of hydrogen and metal for 
H absorption(H-M)

The number of s-electron (s) The bonding length of C, O and metal for CO 
absorption (CM and OM, respectively)

The number of outermost electron (Ne) The bonding length of carbon and oxygen for 
CO absorption (CO)



Table S3 Summary of features for ML construction.

ML models Features

Prediction of , , 
𝐺

𝐻 ∗ 𝐺
𝐶𝑂 ∗ 𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔

N, M, r, , EA, EI, θd, θs, Ne, Nb, Nc, p1-6 

Analysis of
𝐺

𝐻 ∗
N, M, r, , EA, EI, θd, θs, Ne, Nb, Nc, p1-6, M1-
M2, C1-6-M1-2, B1-6-M1-2, H-M1-2

Analysis of 
𝐺

𝐶𝑂 ∗
N, M, r, , EA, EI, θd, θs, Ne, Nb, Nc, p1-6, M1-
M2, C1-6-M1-2, B1-6-M1-2, CM1-2, OM1-2, CO

Analysis of 𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔
N, M, r, , EA, EI, θd, θs, Ne, Nb, Nc, p1-6, M1-
M2, C1-6-M1-2, B1-6-M1-2

Table S4 Summary of features using for describing elements of double-atom catalysts (DACs).

Atom N M R (Å)  EA (eV) EI (eV) d s Ne

Sc 21 44.96 1.64 1.36 0.19 6.56 1 2 3
Ti 22 47.87 1.47 1.54 0.09 6.83 2 2 4
V 23 50.94 1.35 1.63 0.53 6.75 3 2 5
Cr 24 52.00 1.25 1.66 0.68 6.77 5 1 6

Mn 25 54.94 1.37 1.55 0.97 7.43 5 2 7
Fe 26 55.85 1.26 1.83 0.15 7.90 6 2 8
Co 27 58.93 1.25 1.88 0.66 7.88 7 2 9
Ni 28 58.69 1.25 1.91 1.16 7.64 8 2 10
Cu 29 63.55 1.28 1.9 1.24 7.73 10 1 11
Zn 30 65.39 1.37 1.65 0.09 9.39 10 2 12
Y 39 88.91 1.82 1.22 0.31 6.22 1 2 3
Zr 40 91.22 1.6 1.33 0.43 6.63 2 2 4
Nb 41 92.91 1.43 1.6 0.89 6.76 4 1 5
Mo 42 95.96 1.4 2.16 0.75 7.09 5 1 6
Ru 44 101.07 1.34 2.2 1.05 7.36 7 1 8
Rh 45 102.91 1.34 2.28 1.14 7.46 8 1 9
Pd 46 106.42 1.37 2.2 0.56 8.34 10 0 10
Ag 47 107.87 1.44 1.93 1.30 7.58 10 1 11
Cd 48 112.41 1.49 1.69 0.27 8.99 10 2 12
Hf 72 178.49 1.56 1.3 0.63 6.83 2 2 4
Ta 73 180.95 1.43 1.5 0.32 7.55 3 2 5
W 74 183.85 1.37 2.36 0.82 7.86 4 2 6
Re 75 186.21 1.37 1.9 0.38 7.83 5 2 7
Os 76 190.23 1.35 2.2 1.08 8.7 6 2 8
Ir 77 192.22 1.36 2.2 1.56 9.1 7 2 9
Pt 78 195.08 1.39 2.28 2.13 9 9 1 10
Au 79 196.97 1.44 2.54 2.31 9.23 10 1 11



Table S5 Summary of Bader charge analysis for key atoms for 6 B-doped graphene DACs discussed 
in the manuscript.

FeZn_B FeZn_2B FeZn_3B RhCu_B RhCu_2B RhCo_B

Fe -0.690 e Fe -0.741 e Fe -0.751 e Rh -0.133 e Rh -0.106 e Rh -0.188 e
Zn -0.232 e Zn -0.466 e Zn -0.538 e Cu -0.539 e Cu -0.446 e Co -0.544 e
B -0.977 e B -0.765 e B -0.874 e B -1.47 e B -1.55 e B -1.52 e
C +0.410 e B -0.576 e B -0.678 e C +0.257 e B -1.18 e C +0.280 e
C +0.316 e C +0.189 e B -1.08 e C +0.117 e C +0.201 e C -0.0133 e
C +0.125 e C +0.123 e C +0.384 e C +0.240 e C +0.363 e C +0.128 e
C -0.0274 e C +0.214 e C +0.316 e C +0.174 e C +0.162 e C +0.170 e
C +0.463 e C +0.326 e C +0.135 e C +0.0292 e C +0.221 e C +0.183 e
H +0.417 e H +0.245 e H +0.255 e H -0.0626 e H -0.0431 e H -0.0356 e

Table S6 Different numbers of boron doping and the corresponding numbers of B-doped graphene 

DACs with   0.𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔

The number of boron doping The number of DACs with 
stable structure

0 537
1 922
2 1747
3 1103
4 825
5 189
6 57



Figure S1 (a)The design spacing of 16,767 B-doped graphene DACs. (b) The details of 23 different 
doping models for B-doped graphene DACs.

Figure S2 The comparison of . between the DFT calculations and GNN predictions by different 
𝐺

𝐻 ∗

graph: (a) graph G’, (b) the key subgraph of G’



Figure S3 The comparison of  between the DFT calculations and GNN predictions by 
𝐺

𝐶𝑂 ∗

different graph: (a) graph G’, (b) the key subgraph of G’

Figure S4 Using SubgraphX to find the key subgraphs that influences .
𝐺

𝐶𝑂 ∗

Figure S5 (a) The heatmap of feature analysis for different features. (b) The accuracy of various 
machine learning models (No.1: the initial feature set; No.2: feature set deleting feature N; No.3: 
feature set deleting feature M).



Figure S6 Comparation of DFT calculated  and ML predicted of some examples of DACs 
𝐺

𝐻 ∗ 𝐺
𝐻 ∗  

with RF algorithm.



Figure S7 The performance for ML model used for analyzing the activity origin of .
𝐺

𝐻 ∗

Figure S8 The partial dependence plots between features atomic mass (M1 and M2), atomic 
number (N1 and N2), the number of d-electrons (θd1 and θd2) and SHAP values.



Figure S9 (a) The optimized structures of FeZn_B, FeZn_2B, FeZn_3B, RhCu_B, RhCu_2B and 
RhCo_3B without applying DFT-D3 dispersion correction. (b) The optimized structures of FeZn_B, 
FeZn_2B, FeZn_3B absorption hydrogen models with (above) and without (below) applying DFT-
D3 dispersion correction. (c) The relative free energy profiles of the HER process for B-doped 
graphene DACs (FeZn_B, FeZn_2B and FeZn_3B) calculated without apply DFT-D3 dispersion 
correction.

Figure S10 The projected density of states (PDOS) of the optimized structures of H-adsorbed B-
doped graphene DACs.



Figure S11 The comparison of  between the DFT calculations and ML predictions by 𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔

different ML models: (a) SVR, (b) RF, (c) XGBR and (d) ANN.



Figure S12 The SHAP values of ML model used for analyzing .𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔

Figure S13 Comparation of DFT calculated  and ML predicted  of some examples 𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔



of DACs. 

Figure S14 The comparison of  between the DFT calculations and ML predictions by different 
𝐺

𝐶𝑂 ∗

ML models: (a) SVR, (b) RF, (c) XGBR and (d) ANN.

Figure S15 Examples of different adsorbing structures for CO2 reduction reaction.



Figure S16 The relative free energy profiles of the CO2RR process for 5 selected B-doped graphene 
DACs.



Figure S17 The performance for ML model used for analyzing the activity origin of .
𝐺

𝐶𝑂 ∗

Figure S18 Comparation of computation cost for ML prediction and DFT calculations. For DFT 
calculations, we only estimate the time used for generating the dataset. For ML predictions, the 
whole process (starting from training the models to testing the models, and to predicting the 

, ,  of ~17000 DACs) was included in the computation cost.
𝐺

𝐻 ∗ 𝐺
𝐶𝑂 ∗ 𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔


