Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Polyaniline Induced Multi-functionalities in Interfacially Coupled

Electrocatalysts for Hydrogen/Oxygen Evolution Reactions

Niranjanmurthi Lingappan*, Insu Jeon and Wonoh Lee*

School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu,

Gwangju 61186, South Korea

* Corresponding authors

Prof. Wonoh Lee

Email: wonohlee@jnu.ac.kr

Dr. Niranjanmurthi Lingappan

Email: niranjangowri@gmail.com

Fig. S1. FESEM images of (a) random distribution between MoS_2 and carbon particles, and (b) nafion masking of MoS_2 /carbon particles/nafion dispersion prepared through ultrasonication method.

Fig. S2. XPS survey spectrum of PANi-CF.

Fig. S3. FESEM image of MoS₂@O-CF.

Fig. S4. XPS survey spectrum of MoS₂@PANi-CF.

Fig. S5. Mo 3d XPS deconvoluted spectra of (a) MoS₂@O-CF and (b) MoS₂.

Fig. S6. Raman spectrum of MoS₂@PANi-CF with a larger range.

Fig. S7. FESEM image of NiFeLDH@O-CF.

Fig. S8. XPS survey spectrum of NiFeLDH@PANi-CF.

Fig. S9. O1s deconvolution XPS spectra of (a) NiFeLDH@O-CF and (b) NiFeLDH.

Fig. S10. Deconvoluted (a) Mo 3d and (b) S 2p XPS spectra of MoS₂@PANi-CF and (c) Mo

3d and (d) S 2p XPS spectra of MoS₂@O-CF prolonged cycling in acidic medium.

Fig. S11. FESEM image of (a) MoS₂@PANi-CF and (b) MoS₂@O-CF after durability test.

Fig. S12. Deconvoluted (a) Ni 2*p* and (b) Fe 2*p* and (c) O 1*s* XPS spectra of NiFeLDH@PANi-CF and (d) Ni 2*p* and (e) Fe 2*p* and (f) O 1*s* XPS spectra of NiFeLDH@O-CF after cycling in alkaline medium.

Fig. S13. FESEM image of NiFeLDH@O-CF after durability test.

Fig. S14. The OER performance of NiFeLDH based catalysts in 0.5 $ext{M}$ H₂SO₄ electrolyte. (a) Polarization curves of NiFeLDH-based catalysts. (b) Tafel slopes of the NiFeLDH-based catalysts derived from the polarization curves of the catalysts. (c) Chronopotentiometric measurement of NiFeLDH catalysts at the current density of 20 mA cm⁻² in 0.5 $ext{M}$ H₂SO₄ electrolyte for 20 h.

Samples		Onset potential [V vs. RHE]	Tafel slope [mV dec ⁻¹]	Reference	
1T/2H MoS ₂		~0.12	110	[S1]	
1T MoS ₂		0.2	42	[S2]	
Ferromagnetic MoS ₂		0.1	59	[\$3]	
Defect rich MoS ₂		0.1	95	[S4]	
Defect rich MoS ₂		~0.15	50	[S5]	
Three-dimensional MoS ₂		0.2	98	[S6]	
MoS ₂ nanoflowers		0.2	52	[S7]	
MoS ₂ nanosheets		~0.25	38	[S8]	
Monolayer MoS ₂		~0.2	53	[\$9]	
Annealed MoS ₂		~0.25	71	[S10]	
MoS ₂ Nanomesh		~0.15	46	[\$11]	
MoS ₂ Nanodots		0.1	61	[812]	
Edge oriented MoS ₂		~0.25	50	[\$13]	
Micro/Nano MoS ₂		~0.17	74	[S14]	
MoS ₂ /graphene		~0.12	71	[\$15]	
MoS ₂ /carbon cloth		~0.1	42	[S16]	
MoS ₂ /carbon foam		~0.25	44	[\$17]	
MoS ₂ /vertical graphene/ carbon cloth		~0.15	53	[S18]	
MoS ₂ /Au/SiO ₂ /Si		~0.15	45	[S19]	
Vacancy-induced MoS ₂ @PANi-CF	acidic	0.03	35	This work	
	alkaline	0.04	40		
	neutral	0.05	31		

Table S1. The HER performance of the MoS_2 based catalysts.

Samples		Onset potential [V vs. RHE]	Tafel slope [mV dec ⁻¹]	Reference	
NiFeLDH/CNT		1.45	31	[S20]	
Three-dimensional NiFeLDH		1.46	40 [S21]		
NiFeLDH/Graphene		1.43	39	[S22]	
NiFeLDH/Carbon qua	antum dot	1.43	35 [\$23]		
NiFeLDH hollow s	pheres	1.45	53	[S24]	
NiFeLDH/Mesoporous oxide nanosphe	s graphene eres	1.50	63	[\$25]	
NiFeLDH/Reduced grap	ohene oxide	1.50	91	[S26]	
Plasma assisted oxyger NiFeLDH	n enriched	1.48	74	[S27]	
NiFeLDH edge a	ctive	1.47	35	[S28]	
NiFeLDH with oxygen	vacancies	1.45	48	[S29]	
Edge-enriched NiFeLDH		1.45	41	[S30]	
NiFeLDH/carbon	cloth	1.50	56	[\$31]	
NiFeLDH/sulfonated c	arbon dots	1.42	55	[832]	
NiFeLDH edge	rich	1.52	49	[\$33]	
Vacancy-induced	alkaline	1.44	47	This work	
NiFeLDH@PANi-CF	acidic	1.48	76		

Table S2. The OER performance of the NiFeLDH based catalysts.

References for Supporting Information

- [S1] Z. Liu, Z. Gao, Y. Liu, M. Xia, R. Wang, N. Li. ACS Appl. Materials & Interfaces, 9 (2017) 25291-25297.
- [S2] S. Wang, D. Zhang, B. Li, C. Zhang, Z. Du, H. Yin, X. Bi, S. Yang. Adv. Energy Mater. 8 (2018) 1801345.
- [S3] W. Zhou, M. Chen, M. Guo, A. Hong, T. Yu, X. Luo, C. Yuan, W. Lei, S. Wang. Nano Lett. 20 (2020) 2923-2930.
- [S4] J. Xie, H. Qu, J. Xin, X. Zhang, G. Cui, X. Zhang, J. Bao, B. Tang, Y. Xie. Nano Res. 10 (2017) 1178-1188.
- [S5] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, Y. Xie. Adv. Mater. 25 (2013) 5807-5813.
- [S6] X. Geng, W. Wu, N. Li, W. Sun, J. Armstrong, A. Al-hilo, M. Brozak, J. Cui, T.-p. Chen. Adv. Funct. Mater. 24 (2014) 6123-6129.
- [S7] D. Wang, Z. Pan, Z. Wu, Z. Wang, Z. Liu. J. Power Sources, 264 (2014) 229-234.
- [S8] J. Wang, M. Yan, K. Zhao, X. Liao, P. Wang, X. Pan, W. Yang, L. Mai. Adv. Mater. 29 (2017) 1604464.
- [S9] J. Zhang, J. Wu, H. Guo, W. Chen, J. Yuan, U. Martinez, G. Gupta, A. Mohite, P.M. Ajayan, J. Lou. Adv. Mater. 29 (2017) 1701955.
- [S10] D. Kiriya, P. Lobaccaro, H.Y.Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C.M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J.W. Ager, A. Javey. Nano Lett. 16 (2016) 4047-4053.
- [S11] Y. Li, K. Yin, L. Wang, X. Lu, Y. Zhang, Y. Liu, D. Yan, Y. Song, S. Luo. Appl. Catal.
 B. 239 (2018) 537-544.
- [S12] J. Benson, M. Li, S. Wang, P. Wang, P. Papakonstantinou. ACS Appl. Mater. Interfaces, 7 (2015) 14113-14122.
- [S13] Y. Yang, H. Fei, G. Ruan, C. Xiang, J.M. Tour. Adv. Mater. 26 (2014) 8163-8168.
- [S14] B. Guo, K. Yu, H. Li, H. Song, Y. Zhang, X. Lei, H. Fu, Y. Tan, Z. Zhu. ACS Appl. Mater. Interfaces, 8 (2016) 5517-5525.
- [S15] X. Meng, L. Yu, C. Ma, B. Nan, R. Si, Y. Tu, J. Deng, D. Deng, X. Bao. Nano Energy, 61 (2019) 611-616.
- [S16] X. Zang, C. Zhou, Q. Shao, S. Yu, Y. Qin, X. Lin, N. Cao. Energy Technol. 7 (2019) 1900052.

- [S17] X. Guo, G.L. Cao, F. Ding, X. Li, S. Zhen, Y.F. Xue, Y.-m. Yan, T. Liu, K.N. Sun. . Mater. Chem. A, 3 (2015) 5041-5046.
- [S18] Z. Zhang, W. Li, M.F. Yuen, T.W. Ng, Y. Tang, C.S. Lee, X. Chen, W. Zhang. Nano Energy. 18 (2015) 196-204.
- [S19] D. Voiry, R. Fullon, J. Yang, C. de Carvalho Castro e Silva, R. Kappera, I. Bozkurt, D. Kaplan, M.J. Lagos, P.E. Batson, G. Gupta, Aditya D. Mohite, L. Dong, D. Er, V.B. Shenoy, T. Asefa, M. Chhowalla. Nat. Mater. 15 (2016) 1003-1009.
- [S20] M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai. J. Am. Chem. Soc. 135 (2013) 8452-8455.
- [S21] Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei, J. Liu, Y. Li, X. Sun, X. Duan. Chem. Commun. 50 (2014) 6479-6482.
- [S22] X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, S. Yang. Angew. Chem. Int. Ed. 53 (2014) 7584-7588.
- [S23] D. Tang, J. Liu, X. Wu, R. Liu, X. Han, Y. Han, H. Huang, Y. Liu, Z. Kang. ACS Appl. Mater. Interfaces, 6 (2014) 7918-7925.
- [S24] C. Zhang, M. Shao, L. Zhou, Z. Li, K. Xiao, M. Wei. ACS Appl. Mater. Interfaces, 8 (2016) 33697-33703.
- [S25] T. Zhan, X. Liu, S. Lu, W. Hou. Appl. Catal. B. 205 (2017) 551-558.
- [S26] T. Zhan, Y. Zhang, X. Liu, S. Lu, W. Hou. J. Power Sources, 333 (2016) 53-60.
- [S27] H. Chen, Q. Zhao, L. Gao, J. Ran, Y. Hou. ACS Sustain. Chem. Eng. 7 (2019) 4247-4254.
- [S28] J.W. Zhao, Z.-X. Shi, C.F. Li, L.F. Gu, G.R. Li. Chem. Sci. 12 (2021) 650-659.
- [S29] S. Liu, H. Zhang, E. Hu, T. Zhu, C. Zhou, Y. Huang, M. Ling, X. Gao, Z. Lin. J. Mater. Chem. A, 9 (2021) 23697-23702.
- [S30] B. Wang, X. Han, C. Guo, J. Jing, C. Yang, Y. Li, A. Han, D. Wang, J. Liu. Appl. Catal.
 B. 298 (2021) 120580.
- [S31] G. Huang, C. Zhang, Z. Liu, S. Yuan, G. Yang, N. Li. Appl. Surf. Sci. 565 (2021) 150533.
- [S32] W. Zhu, S. Chen, F. Liao, X. Zhao, H. Shi, Y. Shi, L. Xu, Q. Shao, Z. Kang, M. Shao. Chem. Eng. J. 420 (2021) 129690.
- [S33] Y. Zhang, W. Xie, J. Ma, L. Chen, C. Chen, X. Zhang, M. Shao. J. Energy Chem. 60 (2021) 127-134.