Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Si(111)–(7×7) surface as a natural substrate for identical clusters

catalysts

Yu Guo,^a Yanyan Zhao,^a Wei Pei,^b Si Zhou,^{*,a} Jijun Zhao^{*,a}

^aState Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China

^bCollege of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China

^{*}Corresponding authors. Email: sizhou@dlut.edu.cn; zhaojj@dlut.edu.cn

Table of contents

- S1. Electronic structures of Si(111)– (7×7) system
- S2. Electronic structures of identical metal clusters on Si(111)– (7×7) surface
- S3. Binding energy and charge transfer between metal cluster and Si(111)– (7×7)
- S4. *d* orbital center (ε_d) of the supported clusters
- S5. Free energy calculation
- S6. Schematic illustration for CO₂ reduction reaction
- S7. Free energy diagrams of CO₂ reduction
- S8. CO₂ reduction of Pt₆ clusters on Si(111)–(7×7) surface
- S9. Kinetic process of reaction channels on $Pd_6@Si(111)-(7\times7)$
- S10. H₂O decomposition on Pd₆@Si(111)–(7×7) surface
- S11. Gibbs free energy of formation for C₁ products
- S12. Gibbs free energy of formation for C₂ products
- S13. Gibbs free energy of formation for C₃ products
- S14. Gibbs free energy of formation for C₄ products

S1. Electronic structures of Si(111)–(7×7) system

Fig. S1. The calculated band structure of the $Si(111)-(7\times7)$ surface. Here, the bands originating from adatoms are shown with red colors. The energy zero represents the Fermi level.

S2. Electronic structures of identical metal clusters on Si(111)–(7×7) surface

Fig. S2. The local density of states (LDOS) for identical metal clusters on $Si(111)-(7\times7)$ surface.

S3. Binding energy and charge transfer between metal cluster and Si(111)–(7×7) Table S1. Binding energy (E_b) and charge transfer (CT) between metal cluster and Si(111)–(7×7) template

Cluster	E_b (eV/atom)	CT (<i>e</i>)
Mn	-0.51	0.51
Re	-1.58	0.62
Fe	-0.32	0.51
Ru	-1.94	0.69
Os	-3.08	1.11
Со	0.58	0.27
Rh	-2.18	0.76
Ir	-3.12	1.21
Ni	0.22	0.33
Pd	-1.21	0.58
Pt	-2.48	1.08
Cu	1.34	0.01
Ag	1.17	0.05
Au	1.43	0.01
Zn	0.61	0.24
Cd	0.71	0.23

S4. *d* orbital center (ε_d) of the supported clusters

Cluster	$\varepsilon_d (\mathrm{eV})$
Ni	-2.85
Pd	-2.73
Pt	-1.59
Cu	-2.38
Ag	-3.91
Au	-3.53
Zn	-6.74
Cd	-8.34

Table S2. *d* orbital center (ε_d) of the supported clusters.

S5. Free energy calculation

Table S3. Zero–point energy (ZPE) and entropic correction (*TS*) at T = 298.15 K for the molecules and intermediate species involved in CO₂ reduction to C₁ products. The ZPE and *TS* values of reaction intermediates adsorbed on Pd₆@Si(111)–(7×7) are presented and used throughout our calculations.

Species	ZPE (eV)	TS (eV)	ZPE– <i>TS</i> (eV)
CO ₂ *	0.30	0.12	0.18
COOH*	0.62	0.20	0.43
HCOOH*	0.91	0.15	0.76
CO*	0.19	0.05	0.14
HCO*	0.45	0.16	0.29
HCOH*	0.79	0.10	0.69
H ₂ COH*	1.09	0.25	0.84
CH ₃ OH*	1.37	0.21	1.16
CH_2^*	0.65	0.09	0.56
CH_3*	0.93	0.13	0.80
CH_4*	1.20	0.20	0.99
CH ₂ O*	0.71	0.17	0.53

Table S4. Zero–point energy (ZPE) and entropic correction (*TS*) at T = 298.15 K for the molecules and intermediate species involved in CO₂ reduction to C₂ products. The ZPE and *TS* values of reaction intermediates adsorbed on Pd₆@Si(111)–(7×7) are presented and used throughout our calculations.

Species	ZPE (eV)	TS (eV)	ZPE– <i>TS</i> (eV)
CO ₂ .CO ₂ *	0.60	0.24	0.36
CHO-CHO*	0.92	0.26	0.66
CHO-CHOH*	1.31	0.25	1.06
CHO-CH*	0.93	0.17	0.76
CHO-CH ₂ *	1.19	0.13	1.06
CHOH–CH ₂ *	1.53	0.18	1.35
CH–CH ₂ *	1.07	0.17	0.90
$C_{2}H_{4}*$	1.37	0.22	1.15
CHO–CH ₃ *	1.49	0.28	1.22
CH ₂ O–CH ₃ *	1.79	0.19	1.60
C ₂ H ₅ OH*	2.15	0.33	1.81

Table S5. Zero–point energy (ZPE) and entropic correction (*TS*) at T = 298.15 K for the molecules and intermediate species involved in CO₂ reduction to C₃ products. The ZPE and *TS* values of reaction intermediates adsorbed on Pd₆@Si(111)–(7×7) are presented and used throughout our calculations.

Species	ZPE (eV)	TS (eV)	ZPE–TS (eV)
CHO-CH-CHO*	1.44	0.25	1.20
CHO-CH-CHOH*	1.78	0.27	1.52
CHO-CH-CH*	1.35	0.22	1.13
CHO–CH–CH ₂ *	1.64	0.18	1.47
CHOH–CH–CH ₂ *	1.99	0.32	1.67
CHOH-CH2-CH2*	2.25	0.27	1.99
CHOH-CH2-CH3*	2.58	0.24	2.33
CH ₂ OH–CH ₂ –CH ₃ *	2.87	0.38	2.49
CH–CH–CH ₂ *	1.55	0.22	1.33
CH2-CH-CH2*	1.85	0.17	1.68
CH2-CH-CH3*	2.14	0.23	1.92

Table S6. Zero–point energy (ZPE) and entropic correction (*TS*) at T = 298.15 K for the molecules and intermediate species involved in CO₂ reduction to C₄ products. The ZPE and *TS* values of reaction intermediates adsorbed on Pd₆@Si(111)–(7×7) are presented and used throughout our calculations.

Species	ZPE (eV)	TS (eV)	ZPE-TS (eV)
СНОСНСНО*	1.89	0.34	1.55
СНОСНСНСНОН*	2.22	0.31	1.91
CHOCHCHCH*	1.77	0.26	1.51
CHO-CH-CH-CH ₂ *	2.10	0.27	1.84
CHOH-CH-CH-CH ₂ *	2.43	0.32	2.10
CH–CH–CH–CH ₂ *	1.96	0.25	1.72
CH2-CH-CH-CH2*	2.28	0.27	2.01
CH2-CH-CH-CH3*	2.39	0.32	2.07
CH ₂ -CH-CH ₂ -CH ₃ *	2.91	0.33	2.57
CHOH–CH–CH–CH ₃ *	2.72	0.39	2.33
CH ₂ OH–CH–CH–CH ₃ *	3.01	0.32	2.69
CH ₂ OH–CH–CH ₂ –CH ₃ *	3.29	0.26	3.03
CH ₂ OH–CH ₂ –CH ₂ –CH ₃ *	3.63	0.42	3.21

S6. Schematic illustration for CO₂ reduction reaction

Fig. S3. Schematic illustration of the most efficient pathways for CO_2 reduction toward C_1-C_4 products on $Pd_6@Si(111)-(7\times7)$. The asterisk (*) indicates chemisorption of reaction intermediates on the catalyst. The Si, Pd, H, C and O atoms are shown in yellow, green, white, gray and red colors, respectively.

S7. Free energy diagrams of CO₂ reduction

Fig. S4. Free energy diagrams of CO_2 reduction to yield C_3-C_4 products on $Pd_6@Si(111)-(7\times7)$. The blue and orange numbers indicate the Gibbs free energy of formation for C_3 and C_4 products at the rate-determining step. 0.45, 0.46, 0.37 and 0.46 are the ΔG_{RDS} for C_3H_6 , C_3H_7OH , C_4H_8 and C_4H_9OH , respectively.

S8. CO₂ reduction of Pt₆ clusters on Si(111)–(7×7) surface

Fig. S5. Free energy diagrams of CO_2 reduction to yield C_1 products for Pt_6 clusters on Si(111)–(7×7) surface, respectively.

S9. Kinetic process of reaction channels on Pd₆@Si(111)–(7×7)

Fig. S6. Kinetic process of reaction channels toward C_1 , C_2 , C_3 and C_4 products on $Pd_6@Si(111)-(7\times7)$, respectively. The insets display the side- and top-view structures of initial state (left), transition state (middle) and final state (right). The numbers indicate reaction heat (left) and kinetic barrier (middle). The Si, Pd, H, C and O atoms are shown in yellow, green, white, gray and red colors, respectively.

S10. H₂O decomposition on Pd₆@Si(111)–(7×7) surface

Reaction pathway

Fig. S7. The reaction pathway of H_2O decomposition on $Pd_6@Si(111)-(7\times7)$ surface.

S11. Gibbs free energy of formation for $C_1 \mbox{ products}$

Table S7. Gibbs free energy of formation (ΔG) for each elementary step of CO₂ reduction to C₁ products on Pd₆@Si(111)–(7×7). Related to Fig. 5.

Reaction	ΔG (eV)
$CO_2 \rightarrow CO_2^*$	-0.02
$\mathrm{CO}_2^* + \mathrm{H} \rightarrow \mathrm{COOH}^*$	0.47
$\rm COOH^{*} + H^{*} \rightarrow \rm CO^{*} + \rm H_{2}O$	0.16
$\text{CO}_2^* + \text{H}^* \rightarrow \text{CHO.O}^*$	-0.01
$\rm CHO.O + H^* \rightarrow \rm CHO.OH^*$	-0.68
$CHO.OH^* + H^* \rightarrow CHO^* + H_2O$	0.42
$\mathrm{COOH}^* + \mathrm{H}^* \to \mathrm{HCOOH}^*$	-0.11
$\mathrm{CHO}^* + \mathrm{H}^* \to \mathrm{CH}_2\mathrm{O}^*$	1.02
$\mathrm{CHO}^* + \mathrm{H}^* \to \mathrm{HCOH}^*$	-0.05
$\mathrm{HCOH}^{*} + \mathrm{H}^{*} \rightarrow \mathrm{CH}_{2}\mathrm{OH}^{*}$	-0.08
$\mathrm{CH}_2 + \mathrm{H}^* \to \mathrm{CH}_3^*$	-0.34
$CH_3 + H^* \rightarrow CH_4^*$	-0.71
$\rm CH_2OH + H^* {\rightarrow} \rm CH_3OH^*$	-0.14

S12. Gibbs free energy of formation for C_2 products

Table S8. Gibbs free energy of formation (ΔG) for each elementary step of CO₂ reduction to C₂ products on Pd₆@Si(111)–(7×7). Related to Fig. 5.

Reaction	ΔG (eV)
$2CO_2 \rightarrow CO_2.CO_2^*$	-0.13
$CO_2.CO_2^* + 2H^* \rightarrow CHO.O-CHO.O^*$	-0.12
$\text{CHO.O-CHO.O*} + 2\text{H*} \rightarrow \text{CHO.OH-CHO.OH*}$	-0.55
$\text{CHO.OH-CHO.OH}^{*} + 2\text{H}^{*} \rightarrow \text{CHO-CHO}^{*} + 2\text{H}_{2}\text{O}$	0.41
$\mathrm{CHO-CHO}^* + \mathrm{H}^* \rightarrow \mathrm{CHO-CHOH}^*$	-0.01
$CHO-CHOH* + H* \rightarrow CHO-CH* + H_2O$	0.26
$\text{CHO-CH*} + \text{H*} \rightarrow \text{CHO-CH}_2 *$	-0.21
$\text{CHO-CH}_2^* + \text{H}^* \rightarrow \text{CHO-CH}_3^*$	-0.35
$\text{CHO-CH}_2^* + \text{H}^* \rightarrow \text{CHOH-CH}_2^*$	-0.20
$CHOH-CH_2*+H* \rightarrow CH-CH_2*+H_2O$	0.22
$\text{CHO-CH}_3^* + \text{H}^* \rightarrow \text{CH}_2\text{O-CH}_3^*$	0.56
$CH_2O-CH_3* + H^* \rightarrow CH_2OH-CH_3*$	-0.97
$CH-CH_2^* + H^* \rightarrow C_2H_4^*$	-0.94

S13. Gibbs free energy of formation for C_3 products

Table S9. Gibbs free energy of formation (ΔG) for each elementary step of CO₂ reduction to C₃ products on Pd₆@Si(111)–(7×7). Related to Fig. S4.

Reaction	$\Delta G (eV)$
$CHO-CH*+CHO* \rightarrow CHO-CH-CHO*$	-0.16
$\text{CHO-CH-CHO}* + \text{H}* \rightarrow \text{CHO-CH-CHOH}*$	0.45
$\text{CHO-CH-CHOH}* + \text{H}* \rightarrow \text{CHO-CH-CH}* + \text{H}_2\text{O}$	0.10
$\text{CHO-CH-CH*} + \text{H*} \rightarrow \text{CHO-CH-CH}_2 *$	-0.94
$\text{CHO-CH-CH}_2* + \text{H}* \rightarrow \text{CHOH-CH-CH}_2*$	0.23
$CHOH-CH-CH_2*+H* \rightarrow CHOH-CH_2-CH_2*$	0.46
$CHOH-CH-CH_2*+H* \rightarrow CH-CH-CH_2*+H_2O$	-0.28
$CHOH-CH_2-CH_2*+H* \rightarrow CHOH-CH_2-CH_3*$	-0.91
$\text{CH-CH-CH}_2* + \text{H}* \rightarrow \text{CH}_2\text{-CH-CH}_2*$	-0.83
$CHOH-CH_2-CH_3*+H* \rightarrow CH_2OH-CH_2-CH_3*$	-0.50
$CH_2 - CH - CH_2^* + H^* \rightarrow CH_2 - CH - CH_3^*$	-0.26

S14. Gibbs free energy of formation for C_4 products

Table S10. Gibbs free energy of formation (ΔG) for each elementary step of CO₂ reduction to C₄ products on Pd₆@Si(111)–(7×7). Related to Fig. S4.

Reaction	$\Delta G (eV)$
$CHO-CH-CH^* + CHO^* \rightarrow CHO-CH-CH-CHO^*$	-0.27
$\mathrm{CHO}\text{-}\mathrm{CH}\text{-}\mathrm{CHO}\text{+}\mathrm{H}\text{+} \rightarrow \mathrm{CHO}\text{-}\mathrm{CH}\text{-}\mathrm{CHOH}\text{+}$	0.31
$CHO-CH-CH-CHOH* + H* \rightarrow CHO-CH-CH-CH* + H_2O$	0.38
$\text{CHO-CH-CH-CH*} + \text{H*} \rightarrow \text{CHO-CH-CH-CH}_2 *$	-1.35
$\text{CHO-CH-CH-CH}_2^* + \text{H}^* \rightarrow \text{CHOH-CH-CH-CH}_2^*$	-0.26
CHOH–CH–CH–CH2* + H* \rightarrow CH–CH–CH–CH2 *+ H ₂ O	0.16
$CHOH-CH-CH-CH_2* + H* \rightarrow CHOH-CH-CH-CH_3*$	0.10
$CH-CH-CH-CH_2+H^* \rightarrow CH_2-CH-CH-CH_2^*$	-0.55
$CHOH_CH_CH_CH_3* + H* \rightarrow CH_2OH_CH_CH_CH_3*$	-0.26
$CH_2-CH-CH-CH_2^*+H^* \rightarrow CH_2-CH-CH-CH_3^*$	-0.45
$CH_2OH-CH-CH_3* + H* \rightarrow CH_2OH-CH-CH_2-CH_3*$	0.46
$CH_2-CH-CH-CH_3^* + H^* \rightarrow CH_2-CH-CH_2-CH_3^*$	-0.25
$CH_2OH-CH-CH_2-CH_3*+H* \rightarrow CH_2OH-CH_2-CH_2-CH_3*$	-0.97