Supplementary Information

Oxygen deficient yolk-shell structured Co_3O_4 microspheres as an oxygen evolution reaction electrocatalyst for anion exchange membrane water electrolyzers

In Tae Kim^{a,‡}, Sang-Hyun Kim^{a,‡}, Jun Seok Ha^a, Tae Ha Kim^a, Jungho Cho^b, Gi Dae Park^{a,*}, and Yoo Sei Park^{a*}

AUTHOR ADDRESS.

^a Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea.

^b Department of Mechanical Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea.

[‡] These authors contributed equally: In Tae Kim and Sang-Hyun Kim

*E-mail: gdpark@chungbuk.ac.kr, yspark@chungbuk.ac.kr

KEYWORDS: anion exchange membrane water electrolysis; electrocatalysts; spray pyrolysis; oxygen evolution reaction; yolk-shell

Figure S1. (a) Digital photo and (b) schematic diagram of the spray pyrolysis system for the yolk-shell structured Co_3O_4 powders.

Figure S2. Elemental mapping images of oxygen deficient yolk-shell structured Co_3O_4 microsphere (R-Co₃O₄-YS): (a) Na (b) B.

Figure S3. Brunauer-Emmett-Teller (BET) of (a,b) Co₃O₄-YS and (c,d) R-Co₃O₄-YS.

Figure S4. Cyclic voltammetry of (a) Co₃O₄-YS and (b) R-Co₃O₄-YS in non-faradaic region with different scan rates.

Figure S5. Double layer capacitance (C_{dl}) of Co₃O₄-YS and R-Co₃O₄-YS.

Figure S6. Polarization curves of Co₃O₄-YS and R-Co₃O₄-YS normalized by ECSA.

Figure S7. Polarization curves of Co₃O₄-YS and R-Co₃O₄-YS normalized by BET.

Figure S8. HFR-free polarization curves of AEMWE equipped with RuO₂ and R-Co₃O₄-YS.

Figure S9. SEM images of non-yolk-shell Co₃O₄ microsphere (Co₃O₄-dense).

Figure S10. SEM images of oxygen deficient non-yolk-shell Co_3O_4 microsphere (R- Co_3O_4 -dense).

Figure S11. Mass transport losses of AEMWE equipped with $R-Co_3O_4$ -YS and $R-Co_3O_4$ -dense.

Figure S12. Durability of AEMWE equipped with R-Co₃O₄-YS at 0.5 A/cm².

Figure S13. Cell efficiency of AEMWE equipped with R-Co₃O₄-YS at 0.5 A/cm².