Supporting Information

For

Modification of Ti₃C₂T_x MXene with Hyperbranched Polyethylene Ionomers: Stable Dispersions in Nonpolar/Low-Polarity Organic Solvents, Oxidation Protection, and Potential Application In Supercapacitors

Bahareh Raisi,¹ Lingqi Huang,² Zhibin Ye^{1,*}

- ^{1.} Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
- ^{2.} School of Engineering, Laurentian University, Sudbury, Ontario P3E 2C6, Canada

* Corresponding author; email: <u>zhibin.ye@concordia.ca</u>

Table of Content (Total 10 pages, 2 tables, and 6 figures)

Figure S1. ¹H NMR spectra of the quaternary ammonium-containing hyperbranched polyethylene ionomers (I1–I5) and a nonionic hyperbranched ethylene homopolymer

Figure S2. TGA curve of dried unmodified MXene and MXene modified with a nonionic hyperbranched ethylene homopolymer (HBPE)

Figure S3. Water contact angle measurements on films of Ti₃C₂T_x –MXene and I-MXene-4-2

Figure S4. ζ potential results of MXene and I-MXene-4-2 in different solvents after 100 days

Table S1. Physical-chemical properties of solvents used in this study

Table S2. Hansen and Hildebrand solubility parameters of the solvents used in this study.

Figure S5. Photos of the dispersion of unmodified delaminated MXene in water in a closed vial after 30 days (a) and in an open vial after 20 days (b); (c) photo of a stable colloidal dispersion of delaminated I-MXene-4-2 in THF in an open vial after 30 days.

Figure S6. (a) CV curves of MXene device at different scan rates; (b) GCD curves of MXene device at various current densities.

Figure S1. ¹H NMR spectra of the quaternary ammonium-containing hyperbranched polyethylene ionomers (I1–I5) and a nonionic hyperbranched polyethylene homopolymer.

Figure S2. TGA curves of dried unmodified MXene and MXene modified with a nonionic hyperbranched ethylene homopolymer (HBPE).

Figure S3. Water contact angle measurements on films of $Ti_3C_2T_x$ MXene and I-MXene-4-2.

Figure S4. ζ potential results of MXene and I-MXene-4-2 in different solvents after 100 days.

Solvent	Formula	Boiling Point (°C)	Density (g/mL) (at 20°C)	Solubility in H ₂ O ^a (g/100mg)	Relative Polarity ^b	Refractive index (at 20°C)	Viscosity (cP) (at 25°C)	Dielectric Constant
Water	H ₂ O	100	0.998	М	1	1.333	0. 891	80.1
Methanol	CH ₄ O	64.6	0.791	М	0.762	1.329	0.544	32.7
Ethanol	C_2H_6O	78.5	0.789	М	0.654	1.36	1.04	24.5
Acetonitrile	C_2H_3N	81.6	0.786	М	0.460	1.344	0.369	36.64
DMSO	C ₂ H ₆ OS	189	1.092	М	0.444	1.479	1.987	47.24
DMF	C ₃ H ₇ NO	153	0.994	М	0.386	1.4305	0.92	36.7
Acetone	C ₃ H ₆ O	56.2	0.786	М	0.355	1.359	0.306	21.01
Pyridine	C_5H_5N	115.5	0.982	М	0.302	1.5093	0.88	12.4
Chloroform	CHCl ₃	61.2	1.498	0.8	0.259	1.445	0.537	4.81
Ethyl acetate	$C_4H_8O_2$	77.1	0.902	8.7	0.228	1.372	0.423	6.08
THF	C_4H_8O	66	0.886	30	0.207	1.407	0.456	7.52
Benzene	C_6H_6	80.1	0.879	0.18	0.111	1.501	0.603	2.28
Toluene	C_7H_8	110.6	0.867	0.05	0.099	1.496	0.560	2.38
Xylene	$C_{8}H_{10}$	138.5	0.864	0.02	0.074	1.497	0.59	2.57
Hexane	$C_{6}H_{14}$	69	0.655	0.0014	0.009	1.375	0.300	1.89
Cyclohexane	$C_{6}H_{12}$	80.7	0.779	0.005	0.006	1.4262	0.9	2.02

Table S1. Physical-chemical properties of solvents used in this study ^{1,2}

^{*a*} *M* indicates miscible.

^b The values for relative polarity extracted from *Christian Reichardt, Solvents and Solvent Effects in Organic Chemistry*, Wiley-VCH Publishers, 3rd ed., **2003.**

Solvent	Formula	Δd ^{<i>a</i>} (MPa ^{1/2})	δp ^{<i>b</i>}	δh ^c	Hildebrand (MPa ^{1/2})	Hydrogen- bonding capability	
Water	H ₂ O	15.5	16	42.3	47.9	strong	
Methanol	CH ₄ O	15.1	12.3	22.3	29.6	strong	
Ethanol	C ₂ H ₆ O	15.8	8.8	19.4	26	strong	
Acetonitrile	C_2H_3N	15.3	18	6.1	24.3	poor	
DMSO	C ₂ H ₆ OS	18.4	16.4	10.2	24.5	moderate	
DMF	C ₃ H ₇ NO	17.4	13.7	11.3	24.8	moderate	
Acetone	C ₃ H ₆ O	15.5	10.4	7	20.2	moderate	
Pyridine	C ₅ H ₅ N	19	8.8	5.9	21.9	strong	
Chloroform	CHCl ₃	17.8	3.1	5.7	19	poor	
Ethyl acetate	$C_4H_8O_2$	15.8	5.3	7.2	18.1	moderate	
THF	C ₄ H ₈ O	16.8	5.7	8	18.6	moderate	
Benzene	C_6H_6	18.4	0	2	18.8	poor	
Toluene	$\mathrm{C}_{7}\mathrm{H}_{8}$	18	1.4	2	18.2	poor	
Xylene	$C_{8}H_{10}$	17.6	1	3.1	18	poor	
Hexane	$C_{6}H_{14}$	14.9	0	0	14.9	poor	
Cyclohexane	C ₆ H ₁₂	16.8	0	0.2	16.8	poor	

Table S2. Hansen ^{3,4} and Hildebrand solubility ⁴ parameters of the solvents used in this study.

^a Dispersive

^b Polar

° H-bond

Polypropylene and polyethylene have $\delta D=18$, $\delta P=0$, $\delta H=1$, and $\delta D=16.9$, $\delta P=0.8$, $\delta H=2.8$ respectively.^{3,4}

Figure S5. Photos of the dispersion of unmodified delaminated MXene in water in a closed vial after 30 days (a) and in an open vial after 20 days (b); (c) photo of a stable colloidal dispersion of delaminated I-MXene-4-2 in THF in an open vial after 30 days.

Figure S6. (a) CV curves of MXene device at different scan rates; (b) GCD curves of MXene device at various current densities.

- 1. Lide, D. R., CRC Handbook of Chemistry and Physics, 84th. Electrochemical Series. CRC Press LLC, **2004**.
- Yaws, C.L., Thermophysical Properties of Chemicals and Hydrocarbons, 2nd edition, Elsevier, 2014.
- 3. Hansen, C. M., Hansen Solubility Parameters: A User's Handbook, CRC Press: Hoboken, 2007.
- 4. Barton, A. F. M., CRC Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd edition, **2017**.