Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Tailoring buried interface of tin oxide-based n-i-p perovskite solar cells via bidirectional and multifunctional metal ion chelating agent modification

Meng Wang¹, Aoxi He¹, Lili Wu^{1,3,5}, Xia Hao^{1,3,5}, Gengpei Xia³, Yu Jiang³, Rong Su^{*4}, Jingquan Zhang^{*1,3,5}

1 College of Materials Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China

2 Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, People's Republic of China

3 National Photovoltaic Products Quality Supervision and Inspection Center,

Chengdu Product Quality Supervision, Inspection and Research Institute, Chengdu 610100, People's Republic of China

4 Department of Science and Technology Innovation, Tongwei Solar (Chengdu) Co.,

Ltd., Chengdu 610299, People's Republic of China

5 Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, People's Republic of China

Figure S1 (a)XPS survey spectra of SnO_2 , $SnO_2/EDTA4Na$, and SnO_2 coated with particularly low concentration perovskite solution before and after EDTA4Na modification. (b) Na 1s XPS spectra of SnO_2 , $SnO_2/EDTA4Na$ films.

Figure S2 O 1s XPS spectra of EDTA4Na film deposited on glass substrate.

Figure. S3. Optical band gap of SnO₂ before and after EDTA4Na modification, detected by $(\alpha h\mu)^2$ as a function of photon energy.

Figure.S4. UV-Vis absorption spectrum of perovskite thin films deposited on SnO_2 and SnO_2 /EDTA4Na.

Figure S5 (a)-(d). The grain size distribution of perovskite films deposited on the SnO_2 and $SnO_2/EDTA4Na$, corresponding to the FESEM images.

Figure S6 (a)-(d). AFM images of perovskite films deposited on SnO₂ and SnO₂/EDTA4Na.

Devices	$V_{\rm OC}$ (V)	$J_{\rm SC}$ (mA cm ⁻²)	FF (%)	PCE (%)	
control	1.066	24.53	75.04	19.64	
10 mg/mL	1.102	24.93	78.76	21.64	
5 mg/mL	1.140	24.88	80.29	22.77	
2.5 mg/mL	1.069	24.45	79.01	20.66	

Table S1. Photovoltaic parameters statistics of devices based on different concentrations of EDTA4Na modification

			(
Samples	τ_1 (ns)	A_{1} (%)	τ_2 (ns)	A_2	$ au_{\mathrm{avg}}(\mathrm{ns})$
ITO/SnO ₂ /perovskite	107.52	6.2%	543.45	93.8%	717.31
ITO/SnO ₂ /EDTA4Na	27.02	18.86%	185.36	81.14%	137.81

Table S2. Fitting parameters of TRPL decay curves of perovskite films based onITO/SnO2 and ITO/SnO2/EDTA4Na substrate (refer to Figure. 6b).

The trap-state density (N_t) can be calculated by the following equation:

$N_{t=} \frac{2\varepsilon\varepsilon_0 V_{TFL}}{eL^2}$								
$L = 5X10^{-5} cm$	e =1.60 ×10 ⁻¹⁹ C	ε=53.69 ^[1]	$\epsilon_0 = 8.8542 \times 10^{-14} \text{ F/cm}$					

[1].Zhen Li, Bo Li, Xin Wu, Stephanie A. Sheppard, Shoufeng Zhang, Danpeng Gao, Nicholas J. Long, and Zonglong Zhu, *Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells*. 2022. **376**(6591): p. 416-420.