Supplementary Information for the Effect of pore size on the process of $CO₂$ adsorption in MIL-101, MOF-177, and UiO-66

Gunjan Auti,† Yuki Kametani,‡ Hibiki Kimura,† Soumyadeep Paul,† Wei-Lun Hsu,† Shinpei Kusaka,¶ Rytaro Matsuda,¶ Takashi Uemura,‡ Shohei Chiashi,† and Hirofumi Daiguji[∗],†

†Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

‡Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

¶Department of Materials Chemistry, Nagoya University,Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

E-mail: <daiguji@thml.t.u-tokyo.ac.jp>

S1 MOF Characterization

Figure S1: X-Ray diffraction data for the MIL-101 sample.

Figure S2: X-Ray diffraction data for the MOF-177 sample.

Figure S3: X-Ray diffraction data for the UiO-66 sample.

S1.2 Nitrogen Adsorption Isotherm

Figure S4: Nitrogen adsorption-desorption isotherm at 77 K for MIL-101.

Figure S5: Nitrogen adsorption-desorption isotherm at 77 K for MOF-177.

Figure S6: Nitrogen adsorption-desorption isotherm at 77 K for UiO-66.

S2 Enthalpy of Adsorption

Heat flow curves were obtained from the Calvet-type calorimeter (Microcalvet Ultra, Setaram) for the adsorption and desorption processes. The enthalpy of adsorption is calculated by integrating the heat flow curves for each pressure step.

Figure S7: MIL-101 heat flow curve at 273 K during the adsorption process.

Figure S8: MIL-101 heat flow curve at 273 K during the desorption process.

Figure S9: MOF-177 heat flow curve at 273 K during the adsorption process.

Figure S10: MOF-177 heat flow curve at 273 K during the desorption process.

Figure S11: UiO-66 heat flow curve at 273 K during the adsorption process.

Figure S12: UiO-66 heat flow curve at 273 K during the desorption process.

S3 Grand Canonical Monte Carlo Simulation

The Lennard–Jones parameters and the grand canonical Monte Carlo (GCMC) formulation used in the simulation are given in this section. $¹$ $¹$ $¹$ </sup>

S3.1 GCMC Scheme

$$
U_{\text{VDW}} = 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]
$$
 (1)

The mixing potential parameters are calculated using the Lorentz–Berthelot rules:

$$
\epsilon_{ij} = \sqrt{\epsilon_i \epsilon_j}; \quad \sigma_{ij} = \frac{1}{2}(\sigma_i + \sigma_j)
$$
\n(2)

The Coulombic interactions between charged particles are modeled using the Ewald method:

$$
U_{\rm c} = U^{\rm real} + U^{\rm rec} \tag{3}
$$

where the two components of the Coulombic potential \mathbf{U}^real and \mathbf{U}^rec are expressed as:

$$
U^{\text{real}} = \sum_{i < j} q_i q_j \frac{\text{erfc}(\alpha r_{ij})}{r_{ij}} \tag{4}
$$

$$
U^{\text{rec}} = \frac{2\pi}{V} \sum_{\mathbf{k}\neq 0} \frac{1}{k^2} e^{-\frac{k^2}{4\alpha^2}} \left(\left| \sum_{i=1}^N q_i \cos\left(\mathbf{k}\cdot\mathbf{r}_i\right) \right|^2 + \left| \sum_{i=1}^N q_i \sin\left(\mathbf{k}\cdot\mathbf{r}_i\right) \right|^2 \right) - \sum_i \frac{\alpha}{\sqrt{\pi}} q_i^2 \tag{5}
$$

S3.2 L-J Parameters and $CO₂$ Model

MOF	Element	$L-J$ Parameters		
		ϵ [K]	A σ	
$UiO-66$	Zr	34.7221	2.7832	
	$\left(\right)$	48.1581	3.0332	
	С	47.8562	3.4730	
	H	7.6489	2.8464	
MOF-177	\mathbf{Z} n	62.3992	2.4616	
	()	48.1581	3.0332	
	\mathcal{C}	47.8562	3.4730	
	H	7.6489	2.8464	
$MIL-101$	Cr	7.5483	2.6932	
	()	48.1581	3.0332	
	С	47.8562	3.4730	
	F	36.4834	3.0932	
	H	7.6489	2.8464	

Table T[1](#page-19-0): Lennard–Jones parameters for the $\rm MOFs^1$

Table T[2](#page-19-1): TraPPE model parameters for CO_2^2

Atom	Type	ε [K]	σ A	α e
	$O=[C]=O$	27.0	2.80	0.70
	$[O]=C=O$	79.0	3.05	-0.35
	0=C=[0]	79.0	$3.05\,$	-0.35

Table T3: Bond lengths for CO_2 CO_2 according to TraPPE model 2

n^{α}	. $-\sqrt{1}$	
$\sqrt{2}$ \sim \sim $\check{ }$	$-$ $\overline{}$ $\sqrt{ }$	⌒ 100

Table T4: Bond angles for CO_2 CO_2 according to TraPPE model 2

S3.3 Simulation and Experimental Results

Figure S13: Experimental adsorption isotherms at 195 K and 205 K.

Figure S14: Adsorption isotherm obtained from the GCMC simulations at 273 K. The fitting parameters for each isotherm are listed in a later section.

Figure S15: Interaction energy budget obtained from the GCMC simulations at 273 K.

S3.4 Pore-filling Process

Figure S16: Pore-filling process.

S3.5 Isotherm Fitting

The type IV isotherms are modeled using Klotz theory, $3,4$ $3,4$ as given by

$$
\frac{N}{N_{max}} = \frac{Cq(1 - (1 + m)q^{m} + mq^{m+1})}{(1 - q)(1 + (C - 1)q - Cq^{m+1})}
$$
(6)

where,

$$
q = \frac{Kp}{p_{sat}} = KP^*
$$
\n⁽⁷⁾

The m, C, and K are the fitting parameters valued at 4.8192 ± 0.16159 , 13.0442 ± 1.61476 , and 2.3236 ± 0.05718 , respectively, with an R-square value of 0.99787.

The isotherm is modeled using a form given by Mahle^{[5](#page-19-4)} as

$$
\frac{N}{N^{max}} = \frac{1}{D}(\tan^{-1}(\frac{P^* - A}{B}) - \tan^{-1}(\frac{-A}{B}))
$$
\n(8)

where D is,

$$
D = \tan^{-1}\left(\frac{1-A}{B}\right) - \tan^{-1}\left(\frac{-A}{B}\right) \tag{9}
$$

The fitting parameters in Eq. [8](#page-14-0) are $A = 0.22275 \pm 0.00199$ and $B = -0.10738 \pm 0.00294$ with an R-square value of 0.99904. The Type I adsorption mechanism can be modeled using single-site Langmuir theory as

$$
\frac{N}{N^{max}} = \frac{bP^*}{1 + bP^*}
$$
\n⁽¹⁰⁾

The fitting parameter is $b = 35.24596 \pm 0.84979$, with an R-square value of 0.99382.

S4 UiO-n Family

As discussed in the main manuscript, to eliminate the effect of coulombic interaction we perform a similar analysis on the MOFs UiO-66, UiO-67, and UiO-68. The obtained results are plotted in this section. The adsorption isotherms change from Type I to Type V as

Figure S17: $CO₂$ adsorption isotherms for the UiO-family at 195 K a UiO-66: Type I adsorption isotherm, b UiO-67: Type I adsorption isotherm, c UiO-68: Type V adsorption isotherm

Figure S18: Differential enthalpy of adsorption as a function of relative pressure a UiO-66, b UiO-67, c UiO-68

the pore size is increased. UiO-66 with a 6 Å pore has a type I adsorption isotherm (Fig. [S17](#page-15-0)a), UiO-67 with a 9 Å pore has a type I adsorption isotherm (Fig. S17b), and finally

UiO-68 with a 15 Å pore has a Type V adsorption isotherm (Fig. $S17c$ $S17c$). This shows the capillary condensation of $CO₂$ does not take place in the case of UiO-66 and UiO-67 (the gradual increase in the number density of the adsorbate). Whereas in the case of UiO-68, an abrupt increase is seen (see the blue shaded region in Fig. [S17](#page-15-0)c), which corresponds to capillary condensation.^{[6](#page-19-5)} Similar trends can be observed from the differential enthalpy of adsorption as a function of relative pressure (see Fig. [S18\)](#page-15-1). The energy budget for the UiO-

Figure S19: Interaction energy budget for UiO-family a UiO-66, b UiO-67, c UiO-68

family is shown in Fig. [S19.](#page-16-0) In all three cases, the MC coulombic interaction is infinitesimal. The contributions of inter-molecular interactions increase with increasing pore diameter, suggesting a higher number of molecules are adsorbed. Additionally, the ratio of MC - CC interactions increases drastically in the UiO-68 case around $p/p_0 \approx 0.2$ suggesting phase change inside the pore (capillary condensation). Finally, in Fig. [S20,](#page-17-0) radial distribution functions are shown at different relative pressures. Fig. [S20](#page-17-0)a, [S20](#page-17-0)b, and [S20](#page-17-0)c show the distribution of CO_2 around the central metal atom (Zr) in each case. For UiO-66, the center of the pore is the primary adsorption site as discussed in the main manuscript. Whereas in the case of UiO-67 and UiO-68 the primary adsorption site is near the metal atom at low pressure and shifts towards the center of the pore as the pressure increases. Fig. [S20](#page-17-0)d, [S20](#page-17-0)e, and S20f show the radial distribution function of the adsorbed $CO₂$ around adsorbed

 $CO₂$. It is interesting to note that in all three cases, the RDF shows a "solid-like" structure. This might correspond to "capillary freezing" as the bulk $CO₂$ shows sublimation properties at 195 K. However, further investigation to understand the phase of adsorbed $CO₂$ inside UiO-family pores is needed.

Figure S20: Radial distribution functions RDF of adsorbed CO_2 around the central metal atom Zr in a UiO-66, b UiO-67, and c UiO-68

RDF of CO_2 - CO_2 adsorbed in **d** UiO-66, **e** UiO-67, and **f** UiO-68

Figure S21: Additional MOFs studied

To understand the effect of pore structure on the adsorption characteristics we investigated CO² adsorption in MOF-5 which has all the other parameters (central metal atom, pore-size) similar to MOF-177. However, the structures of pores in each case are different. The results obtained are shown in Fig. [S21](#page-18-0)a, Fig. [S21](#page-18-0)b, and Fig. [S21](#page-18-0)c. It can be observed that, despite different pore structures, different central metal atoms, and charge distribution the adsorption isotherms of MOF-177 (see Fig. ??c), UiO-68 (see Fig. [S17](#page-15-0)c), and MOF-5 (see Fig. [S21](#page-18-0)a) are similar to each other, as the confinement parameter for each all three MOFs lie within 0.4 and 0.6 (see Fig. ??b). This shows the consistency of the one-dimensional model. However, in the case of PCN-221 where there are two metal sites (Cu and Zr), the adsorption isotherm is still type V despite the confinement parameter being greater than Ψ_{crit} ($\Psi = 0.91$) (see Figs. [S21](#page-18-0)d, e, and f)

References

- (1) Rapp´e, A. K.; Casewit, C. J.; Colwell, K.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American chemical society 1992 , 114 , $10024-10035$.
- (2) Potoff, J. J.; Siepmann, J. I. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE journal 2001 , 47, 1676–1682.
- (3) Klotz, I. M.; Walker, F. M.; Pivan, R. B. The binding of organic ions by proteins1. Journal of the American Chemical Society 1946, 68, 1486–1490.
- (4) Buttersack, C. Modeling of type IV and V sigmoidal adsorption isotherms. Physical Chemistry Chemical Physics 2019, 21, 5614–5626.
- (5) Mahle, J. J. An adsorption equilibrium model for Type 5 isotherms. Carbon 2002, μ , 2753–2759.
- (6) Zsigmondy, R. Uber die Struktur des Gels der Kieselsäure. Theorie der Entwässerung. Zeitschrift für anorganische Chemie 1911, 71, 356–377.