Electronic Supplementary Information

Ammonium fluoride induced barrier-free and oxygen

vacancies enhanced LLZO powder for fast interfacial

lithium-ion transport in composite solid electrolytes

Ziwen Pan, ^a Shiyu Cao, ^a Xinqi Lu, ^a Gang Zhang, ^a Qiang Shen, ^a Chong Mao, ^b Xiaobing Dai ^b and Fei Chen *^{a, c, d}

^e State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

^{b.} Zhuhai Smoothway Electronic Materials Co., Ltd, Zhuhai 519110, China.

^{c.} Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China.

^{d.} International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

*Corresponding author.

E-mail address: chenfei027@whut.edu.cn

Additional Figures

Figure S1. Particle size distribution curve of pristine LLZO powder

Figure S2. Nyquist plot of Li_{6.4}Ga_{0.2}La₃Z₂O₁₂ pellet

Figure S3. TG curve of NH₄F powder

Figure S4. (a) XPS spectra of pristine LLZO powder. Surface elements contents (b); La 3d spectra (c); Zr 3d spectra (d) of LLZO, Ar environment annealed LLZO and NH₄F etched LLZO powder that detected by XPS.

Figure S5. Optical photograph of PVDF-LiTFSI-NH₄F etched LLZO, PVDF-LiTFSI-LLZO.

Figure S6. Morphologies of PEO-LiTFSI-LLZO membrane (a) were captured by SEM. The distribution of O, F and Zr respectively on surface of PEO-LiTFSI-LLZO membrane (b)-(d) were detected by EDX mapping.

Figure S7. Nyquist plots of PEO-LiTFSI-NH4F etched LLZO (a); PEO-LiTFSI-LLZO (b); PEO-

LiTFSI (c) membranes.

Figure S8. Detailed lithium-ion transference number data of PEO-LiTFSI-NH₄F etched LLZO membrane

Figure S9. LSV curves of PVDF-LiTFSI-NH4F etched LLZO and PVDF-LiTFSI-LLZO

Figure S10. Arrhenius plots of PVDF-LiTFSI-NH₄F etched LLZO, PVDF-LiTFSI-LLZO and PVDF-LiTFSI.

Figure S11. EIS spectra of Li symmetric cells with PEO-LiTFSI, PEO-LiTFSI-LLZO, and PEO-LiTFSI-NH₄F etched LLZO membranes

Figure S12. a) Cycling performance of different electrolytes coupled with NCM811 cathode and lithium metal anode at 0.2 C and b) corresponding voltage curves at first cycle.

Additional Table

r						
Electrolytes	Ionic conductivity (10 ⁻⁴ S cm ⁻¹) at different temperature (°C)					
	30	40	50	60	70	80
PEO-LiTFSI-NH4F etched LLZO	1.93	4.88	9.10	12.8	16.7	21.7
PEO-LiTFSI- LLZO	0.279	0.885	3.69	6.45	8.66	12.2
PEO-LiTFSI	0.335	1.02	5.05	8.50	12.0	18.2

 Table S1. Ionic conductivity of PEO-LiTFSI, PEO-LiTFSI-LLZO and PEO-LiTFSI-NH4F etched

 LLZO membranes under different temperatures.

Additional Experiment section

Preparation of PVDF matrix composite solid electrolytes:

LiTFSI (Aladdin, 99.95%), and PVDF (Arkema, Kynar 761) were dried under vacuum at 80 °C for 24 h before use. PVDF solid electrolyte membranes were prepared via solution-casting method. PVDF and LiTFSI were dissolved in N, N-dimethylformamide (DMF) with weight ratio of 2:1 followed by ball-milling at 200 rpm for 3 h. After that, PVDF solid electrolytes solution was cast onto a Teflon mold ($4 \times 4 \text{ cm}^2$) and then dried at 60°C for 24-36 h to evaporate solvent. PVDF-LLZO and PVDF-NH₄F etched LLZO composite electrolytes were prepared by adding different amounts of inorganic electrolytes into PVDF solid electrolytes solution. Then the suspension was ball-milled at 200 rpm for 12 h to ensure the fine dispersion before casting.