Electronic Supplementary Information (ESI)

Argyrodite sulfide coated NCM cathode for the improved interfacial contact in normal-pressure operational all-solid-state batteries

Jun Tae Kim, ^{ab} Hyeon-Ji Shin, ^{ac} A-yeon Kim, ^a Hyeon-Seong Oh, ^a Hun Kim, ^b Seungho Yu, ^a Hyoungchul Kim, ^d Kyung Yoon Chung, ^{ac} Jongsoon Kim, ^{ef} Yang-Kook Sun ^{*b} and Hun-Gi Jung

*acef

^aEnergy Storage Research Center, Korea Institution of Science and Technology, Seoul 02792, Republic of Korea.
^bDepartment of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea.
^cDivision of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
^dEnergy Materials Research Center, Korea Institution of Science and Technology, Seoul 02792, Republic of Korea.
^eKIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.

^fDepartment of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Corresponding Author

*E-mail: yksun@hanyang.ac.kr (Y.-K. Sun), hungi@kist.re.kr (H.-G. Jung)

Fig. S1 1st charge–discharge voltage profile of NCM523 with liquid electrolyte.

Fig. S2 BET analysis of N_2 adsorption–desorption isotherm for NCM523.

Fig. S3 Results of liquid-phase synthesis of Li_6PS_5Cl precursors in solvent. Digital photographs of (a) without dibutyl ether and (b) with dibutyl ether (during synthesis without stirring).

Fig. S4 Nyquist plots of impedance spectra for (a) LPSCI_BM, (b) LPSCI_LP1, and (c) LPSCI_LP2 with elevating temperature from RT to 110 $^{\circ}$ C at intervals of 20 $^{\circ}$ C.

Fig. S5 Nyquist plots of impedance spectra for (a) LPSCI_BM, (b) LPSCI_LP1, and (c) LPSCI_LP2 with heat-treatment at 180 $^{\circ}$ C.

Fig. S6 Chronoamperometry results of (a) LPSCI_BM, (b) LPSCI_LP1, and (c) LPSCI_LP2 with an applied voltage of 0.1, 0.2, 0.3, 0.4, and 0.5 V. (d) Linear fits.

Fig. S7 SEM images of (a) NCM523_BM, (b) NCM523_LP1, and (c) NCM523_LP2 with corresponding EDS mapping of Co, Mn, O, P, and Cl.

Fig. S8 (a) Digital photograph of 10 g base coating process. SEM images of (b) 1 g base and (c) 10 g base of NCM523_LP2 with corresponding EDS mapping of Ni, Co, Mn, O, P, S, and Cl.

Fig. S9 Ni 2p XPS spectra of NCM523 and NCM523_LP2.

Fig. S10 Rietveld refinement results of the XRD patterns of NCM523_LP2.

Fig. S11 1st charge–discharge voltage profiles of all-solid-state cells with composite cathode featuring NCM523, NCM523_LP1, and NCM523_LP2.

Fig. S12 Fitted values for impedance spectra of all-solid-state cells with (a) NCM523, and (b) NCM523_LP2 in Fig. 4e.

Fig. S13 Electrochemical characterization of all-solid-state cells employing bare NCM523 and NCM523_LP2 with variable fabrication pressure. (a, c) 1st charge–discharge voltage profiles. Cross-sectional SEM images of composite cathode with (b) NCM523, and (d) NCM523_LP2 applying variable fabrication pressure. Red arrows indicate micro cracks in cathode active material.

Fig. S14 Corresponding EDS mapping of S in Fig. 5a and b. Pristine state of composite cathode with (a) NCM523, and (b) NCM523_LP2. Red arrows indicate intimate contacts.