Supporting Information

Advancing Next-Generation Nonaqueous Mg-CO₂ Batteries: Insights into Reaction Mechanisms and Catalyst Design

Rahul Jayan, Md Mahbubul Islam*

Department of Mechanical Engineering, Wayne State University, Detroit, MI-48202, USA

*Corresponding Author: gy5553@wayne.edu

Calculation methodology

The charge density difference for the intermediate species adsorbed α -Mo₂C (001) was calculated based on the expression $\rho_b = \rho_{adsorbed state} - (\rho_{adsorbent} + \rho_{cat})$, where $\rho_{adsorbed state}$, $\rho_{adsorbent}$, and ρ_{cat} denote the charge density of the catalyst with adsorbed reaction intermediates, isolated intermediate species, and the catalytic surface, respectively.¹

Figure S1. Top and side views of the most stable geometric configuration of MgCO₃ nucleation (Path I)

Figure S2. Top and side views of the most stable geometric configuration of MgCO₃ nucleation (Path II)

S1. Density of states (DOS) calculations

We calculate the density of states (DOS) to understand the electronic structure of the α -Mo₂C (001) catalyst both before and after the adsorption of reaction intermediates. Figure S3 illustrates that the α -Mo₂C (001) catalyst is metallic in nature with electron states around the Fermi level, indicating the material's electronically conductive properties. Furthermore, a comparison of the total density of states (TDOS) before and after intermediate adsorption reveals that electronic conductivity is maintained after adsorption. Furthermore, the d-band center analysis for both MgC₂O₄ and MgCO₃ nucleation showed that the value of MgC₂O₄ (-1.062 eV) is closer to the Fermi level than MgCO₃ (-1.076 eV).

Figure S3. The projected density of states of various reaction intermediate (Mg, CO₂, MgC₂O₄ and MgCO₃) adsorbed α -Mo₂C (001) surface. The Fermi level is denoted by the dotted line.

Figure S4. Top and side views of the most stable geometric configuration of MgCO₃ nucleation (Path V)

Figure S5. Top and side views of the most stable geometric configuration of MgCO₃ nucleation (Path VI)

Figure S6. Top and side views of the most stable geometric configuration of MgC_2O_4 nucleation (Path III)

Figure S7. Top and side views of the most stable geometric configuration of MgC₂O₄ nucleation (Path IV)

Figure S8. Computed Gibbs free energies of various reaction intermediate pathways for MgCO₃ nucleation at U=0V

Figure S9. Computed Gibbs free energies of various reaction intermediate pathways for MgC_2O_4 nucleation at U=0V and 1.98 V

Figure S10. The calculated reaction energies for the formation of various Mg salts in gas, adsorbed, and solid phases

Figure S11. Snapshot of charge density difference (DCD) for Mg, CO_2 and MgCO₃ adsorbed α -Mo₂C (001)

Standard Gibbs Free energies and equilibrium voltage calculations

For MgCO₃ and MgC₂O₄ nucleation, the overall chemical reaction can be written as

$$2Mg(s) + 2CO_2(g) \rightarrow MgCO_3(s) + MgO(s) + C(s)$$
(1)

$$Mg(s) + 2 CO_2(g) \rightarrow MgC_2O_4(s)$$
⁽²⁾

From the above chemical reactions, the standard Gibbs free energies of both $MgCO_3$ (s) and MgC_2O_4 (s) can be calculated as

$$\Delta G_{f}^{0}(MgCO_{3})_{s} = G^{0}(MgCO_{3})_{s} + G^{0}(MgO)_{s} + G^{0}(C)_{s} - 2 G^{0}(Mg)_{s} - 2 G^{0}(CO_{2})_{g}$$
(3)

$$\Delta G^{0}f(MgC_{2}O_{4})_{s} = G^{0}(MgC_{2}O_{4})_{s} - G^{0}(Mg)_{s} - 2 G^{0}(CO_{2})_{g}$$
(4)

Overall, from the standard free energy calculations, the value of ΔG^{0}_{f} (MgCO₃)_s and $\Delta G^{0}f$ (MgC₂O₄)_s was calculated to be -8.55eV and -3.98 eV, respectively. From the Nernst equation,

$$\mathbf{U}_{\mathbf{0}}\left(\mathbf{M}\right) = -\Delta \mathbf{G}_{\mathbf{f}}^{\mathbf{0}} / \mathbf{n}\mathbf{e} \tag{5}$$

where n and e represent the number of transferred electrons and electronic charge and the value of equilibrium potential U_0 (MgCO₃) and U_0 (MgC₂O₄) was calculated to be 2.13 V and 1.98 V.

Electrochemical free energy changes during the discharging and charging processes

For the studied catalyst, the electrochemical free energy change for the most favorable pathway during the discharging/charging process is calculated based on the expression:

$$(\Delta G_{\rm E} (\rm Mg-\rm CO_2)) = E_{\rm total} - \{E_{\rm prev} + n_{\rm Mg} (\mu_{\rm Mg}) + n_{\rm CO_2} (\mu_{\rm CO_2})\}$$
(6)

 $E_{total} \text{ and } E_{prev} \text{ represents energy of the total system and energy of the previous step. } n_{Mg}, n_{CO_2}, \mu_{Mg} \text{ and } \mu_{CO2} \text{ denotes the number of Mg, CO}_2 \text{ and chemical potential of Mg and CO}_2.$

Discharge overpotential
$$(\eta_{dis}) = U_{eq} - U_{dis},$$
 (7)

Charge overpotential $(\eta_{chg}) = U_{chg} - U_{eq},$ (8)

Total overpotential (
$$\Delta E_{total}$$
) = η_{dis} + η_{chg} (9)

Table S1

The calculated zero-point energies and entropies for all the studied reaction intermediates for the studied α -Mo₂C (001) substrate

Reaction intermediates	ZPE	TS
Mg	0.037	0.146
CO ₂	0.332	0.178
MgCO ₂	0.368	0.217
MgCO ₃ + CO	0.657	0.306
$MgCO_3 + MgO + C$	0.693	0.277
$CO_3 + CO$	0.613	0.266
$MgO + CO_3 + C$	0.647	0.297
C ₂ O ₄	0.648	0.235
MgC ₂ O ₄	0.681	0.261

References

1 K. Momma and F. Izumi, J Appl Cryst, 2011, 44, 1272–1276.