Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Crystallization mechanism and defect passivation of Cu₂ZnSn(S,Se)₄ thin film solar cells via in-situ potassium doping

Liangzheng Dong^{a, b, c}, Shengye Tao^{a, b, c}, Ming Zhao^{a, b, c}, *, Daming Zhuang^{a, b, c}, *, Yafei Wang^{a, b, c},

Hanpeng Wang ^{a, b, c}, Mengyao Jia ^{a, b, c}, Junsu Han ^{a, b, c}, Hongwei Zhu ^{a, c}

^a School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, PR China

E-mail: zhaoming2013@mail.tsinghua.edu.cn; dmzhuang@tsinghua.edu.cn

^b Key Laboratory for Advanced Materials Process Technology of Ministry of Education, Tsinghua University, 100084 Beijing, PR

China

° State Key Laboratory of New Ceramics and Fine Processing, 100084 Beijing, PR China

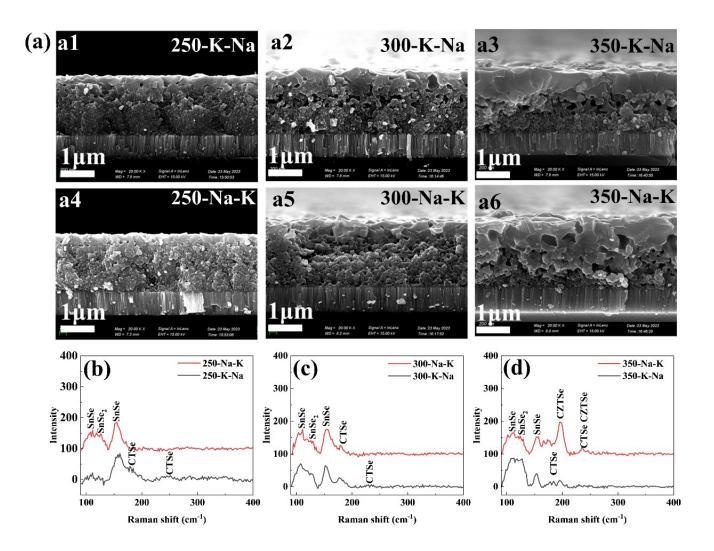


Fig. S1. (a) Cross section SEM images of CZTSSe absorbers annealed at different temperatures (250°C, 300°C and

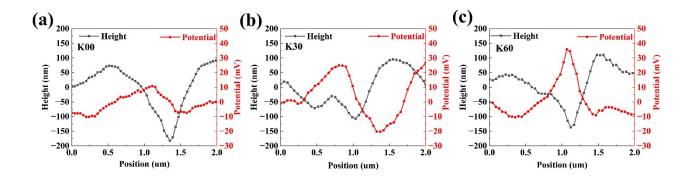


Fig. S2. The line-scan profiles of AFM topography and KPFM potential images of (a) K00, (b) K30 and (c) K60.

Fig. S2(a) (b) (c) are extracted from line-scan shown in the AFM and KPFM images. It is identified that contact potential difference at grain boundaries is improved with the increase of K doping concentration.